Skip to main content
Log in

Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Antimicrobial proteinaceous compounds such as bacteriocins produced from Lactobacillus sp. are widely known. They have potential antimicrobial activities towards closely related bacteria and several pathogens associated with food spoilage and hence can be a potential food bio-preservative agent. Bacteriocin production requires optimized process, complex media and well-controlled physical conditions including pH and temperature. A probiotic strain of L. casei LA-1 isolated from mango pickle was used in the present study. The influence of physical parameters viz. temperature (15 ∼ 45°C), pH (4.0 ∼ 7.0), incubation time (up to 48 h) and inoculum size (0.7 ∼ 2.0 O.D) on bacteriocin production was analyzed. The effect of all the parameters was first investigated using the one-factor-at-a-time method (OFAT) to see the significance of these parameters on bacteriocin production and then further optimized by response surface methodology (RSM). Following OFAT analysis, all factors were found to have a significant effect on bacteriocin production. Bacteriocin production of 2,844 AU/mL was obtained at temperature 37°C, pH 6.7 and inoculum size 1.8 O.D at an incubation time of 20 h and it was produced during the stationary phase of growth. Statistical analysis showed that three variables-pH, temperature and incubation time have significant effects on bacteriocin production. RSM proved to be a powerful tool in the optimization of bacteriocin production by L. casei LA-1 with a two-fold increase, giving a production of 4652.15 AU/mL at pH 7.19, temperature 33.3°C and incubation time of 22.2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilar, A. (1991) Biotechnology of lactic acid bacteria: An European perspective. Food Biotechnol. 5: 323–330.

    Article  Google Scholar 

  2. Stiles, M. E. (1996) Biopreservation by lactic acid bacteria. Anton van Leeuw 70: 331–345.

    Article  CAS  Google Scholar 

  3. Marrug, J. D. (1995) Bacteriocins, their role in developing natural products. Food Biotechnol. 5: 305–312.

    Article  Google Scholar 

  4. Holzapfel, W. H., R. Geisen, and U. Schillinger (1995) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24: 343–362.

    Article  CAS  Google Scholar 

  5. Holtzel, A., M. G. Ganzle, G. J. Nicholson, W. P. Hammes, and G.. Jung (2000) The first low-molecular-weight antibiotic from lactic acid bacteria: Reutericyclin, a new tetramic acid Angewandte. Chem. Int. Edi. 39: 2766–2768.

    Article  CAS  Google Scholar 

  6. Magnusson, J. and J. Schnürer (2001) Lactobacillus coryniformis subsp Coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67: 1–5.

    Article  CAS  Google Scholar 

  7. Daeschel, M. A. (1993) Applications and interactions of bacteriocins from lactic acid bacteria in foods and beverages. pp. 63–91. In: D. G. Hoover and L. R. Steenson (eds.). Bacteriocins of lactic acid bacteria. Academic Press Inc., NY.

    Google Scholar 

  8. De Vuyst, L. and E. J. Vandamme (1994) Lactic acid bacteria and bacteriocins: their practical importance. pp. 1–11. In: L. de Vuyst and E. J. Vandamme (eds.). Bacteriocins of lactic acid bacteria: Microbiology, genetics and applications. Blackie Academic and Professional, London, UK.

    Google Scholar 

  9. Ray, B. and M. A. Daeschel (1994) Bacteriocins of starter culture bacteria. pp. 133–165. In: V. M. Dillon and R. G. Board (eds.). Natural antimicrobial systems and food preservation. CAB International, Wallingford, Oxfordshire, UK.

    Google Scholar 

  10. Antonio Gálvez, Hikmate Abriouel, Rosario Lucas López, and Nabil Ben Omar (2007) Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120: 51–70.

    Article  Google Scholar 

  11. Dodd, H. M. and M. J. Gasson (1994) Bacteriocins of lactic acid bacteria. pp. 211–255. In: M. J. Gasson and W. M. de Vos (eds.). Genetics and biotechnology of lactic acid bacteria. Blackie Academic and Professional, London, UK.

    Chapter  Google Scholar 

  12. Piard, J. -C. and M. J. Desmazeaud (1992) Inhibiting factors produced by lactic acid bacteria 2 Antibacterial substances and bacteriocins. Lait. 72: 113–142.

    Article  CAS  Google Scholar 

  13. Eijsink, V. G. H., L. Axelsson, D. B. Diep, L. S. Håvarstein, H. Holo, and I. F. Nes (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Anton. van Leeuw. 81: 639–654.

    Article  CAS  Google Scholar 

  14. Holo, H. and I. F. Nes (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopol. 55: 50–61.

    Article  Google Scholar 

  15. Jack, R. W., J. R. Tagg, and B. Ray (1995) Bacteriocins of Grampositive bacteria. Microbiol. Rev. 59: 171–200.

    CAS  Google Scholar 

  16. Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39–86.

    CAS  Google Scholar 

  17. Leal-Sánchez, M. V., R. Jiménez-Díaz, A. Maldonado-Barragán, A. Garrido-Fernández, and J. L. Ruiz-Barba (2002) Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl. Environ. Microbiol. 68: 4465–4471.

    Article  Google Scholar 

  18. Cássia Regina Nespolo and Adriano Brandelli (2010) Production of bacteriocin-like substances by lactic acid bacteria isolated from regional ovine cheese. Braz. J. Microbiol. 41: 1009–1018

    Article  Google Scholar 

  19. Beatriz Robredo and Carmen Torres (2000) Bacteriocin production by Lactobacillus salivarius of animal origin. J. Clin. Microbiol. 38: 3908–3909.

    CAS  Google Scholar 

  20. Yang, R. and B. Ray (1994) Factors influencing production of bacteriocins by lactic acid bacteria. Food Microbiol. 11: 281–291.

    Article  Google Scholar 

  21. Carolissen-Mackay, V., G. Arendse, and J. W. Hastings (1997) Purification of bacteriocins of lactic acid bacteria: Problems and pointers. Int. J. Food Microbiol. 34: 1–16.

    Article  CAS  Google Scholar 

  22. Daba, H., C. Lacroix, J. Huang, and R. E. Simard (1993) Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Appl. Microbiol. Biotechnol. 39: 166–173.

    Article  CAS  Google Scholar 

  23. De Vuyst, L. and E. J. Vandamme (1991) Microbial manipulation of nisin biosynthesis and fermentation. pp. 397–409. In: G. Jung and H. -G. Sahl (eds.). Nisin and novel lantibiotics. ESCOM Science Publishers, Leiden, The Netherlands.

    Google Scholar 

  24. Kaiser, A. L. and T. J. Montville (1993) The influence of pH and growth rate on production of the bacteriocin, bavaricin MN, in batch and continuous fermentations. J. Appl. Bacteriol. 75: 536–540.

    Article  CAS  Google Scholar 

  25. Leroy, F. and L. De Vuyst (1999) Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K. Appl. Environ. Microbiol. 6: 974–981.

    Google Scholar 

  26. Møortvedt-Abildgaard, C. I., J. Nissen-Meyer, B. Jelle, B. Grenov, M. Skaugen, and I. F. Nes (1995) Production and pH-dependent bactericidal activity of lactocin S, a lantibiotic from Lactobacillus sake L45. Appl. Environ. Microbiol. 61: 175–179.

    Google Scholar 

  27. Parente, E. and A. Ricciardi (1994) Influence of pH on the production of enterocin 1146 during batch fermentation. Let. Appl. Microbiol. 19: 12–15.

    Article  CAS  Google Scholar 

  28. Adinarayana, K., P. Ellaiah, B. Srinivasulu, R. B. Devi, and G. Adinarayana (2003) Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation. Proc. Biochem. 38: 1565–1572.

    Article  CAS  Google Scholar 

  29. Oh, S., S. Rheem, J. Sim, S. Kim, and Y. Baek (1995) Optimizing conditions for the growth of Lactobacillus casei YIT 9018 in tryptone-glucose medium by using response surface methodology. Appl. Environ. Microbiol. 61: 3809–3814.

    CAS  Google Scholar 

  30. Li, C., J. Bai, Z. Cai, and F. Ouyang (2001) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J. biotechnol. 93: 27–34.

    Article  Google Scholar 

  31. Kumar, M., M. Ghosh, and A. Ganguli (2011) Mitogenic response and probiotic characteristics of lactic acid bacteria isolated from indigenously pickled vegetables and fermented beverages. World J. Microbiol. Technol. (In press) DOI 10.1007/s11274-011-0866-4.

  32. Motta, A. S. and A. Brandelli (2002) Characterization of an antibacterial peptide produced by Brevibacterium linens. J. Appl. Microbiol. 92: 63–71.

    Article  CAS  Google Scholar 

  33. Kimura, H., T. Sashihara, H. Matsusaki, K. Sonomoto, and A. Ishizaki (1998) Novel bacteriocin of Pediococcus sp ISK-1 isolated from wellaged bed of fermented rice. Bran. Ann. NY Acad. Sci. 864: 345–348.

    Article  CAS  Google Scholar 

  34. Myers, R. and R. C. Montgomery (2002) Response surface methodology: PROCESS and product optimization using designed experiments. Wiley, NY.

    Google Scholar 

  35. Kim, M. H., Y. J. Kong, H. Baek, and H. Hyun (2006) Optimization of culture conditions and medium composition for the production of micrococcin GO5 by Micrococcus sp GO5. J. Biotechnol. 121: 54–61.

    Article  CAS  Google Scholar 

  36. Matsusaki, H., N. Endo, K. Sonomoto, and A. Ishizaki (1996) Lantibiotic nisin Z fermentative production by Lactococcus lactis IO-1: Relationship between production of the lantibiotic and lactate and cell growth. Appl. Microbiol. Biotechnol. 45: 36–41.

    Article  CAS  Google Scholar 

  37. Cheigh, C. I., H. J. Choi, H. Park, S. B. Kim, M. C. Kook, T. S. Kim, J. K. Hwang, and Y. R. Pyun (2002) Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J. Biotechnol. 95: 225–235.

    Article  CAS  Google Scholar 

  38. Parente, E., A. Ricciardi, and G. Addario (1994) Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. Lactis 140NWC during batch fermentation. Appl. Microbiol. Biotechnol. 41: 388–394.

    CAS  Google Scholar 

  39. De Vuyst, L., R. Callewaert, and K. Crabbé (1996) Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiol. 142: 817–827.

    Article  Google Scholar 

  40. Vignolo, G. M., M. N. Kairuz, A. A. P. Ruiz-Holgado, and G. Oliver (1995) Influence of growth conditions on the production of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 705. J. Appl. Bacteriol. 78: 5–10.

    Article  CAS  Google Scholar 

  41. Krier, F., A. M. Revol-Junelles, and P. Germain (1998) Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Appl. Microbiol. Biotechnol. 50: 359–363.

    Article  CAS  Google Scholar 

  42. Pilet, M. F., X. Dousset, R. Barre, G. Novel, M. Desmazeaud, and J. C. Piard (1995) Evidence for two bacteriocins produced by Carnobacterium piscicola and Carnobacterium divergens isolated from fishand active against Listeria monocytogenes. J. Food Prot. 58: 256–262.

    Google Scholar 

  43. Stoffels, G., I. Nes, and A. Guomundsdottir (1992) Isolation and properties of a bacteriocin Carnobacterium piscicola isolated from fish. J. Appl. Bacteriol. 73: 309–316.

    Article  CAS  Google Scholar 

  44. Biswas, S. R., P. Ray, M. C. Johnson, and B. Ray (1991) Influence of growth conditions on the production of a Bacteriocin, Pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57: 1265–1267.

    CAS  Google Scholar 

  45. Hurst, A. (1981) Nisin. In: D. Perlman and A. Laskin (eds.). Advances in Applied Microbiology. Academic Press, NY.

    Google Scholar 

  46. Olson, E. R. (1993) Influence of pH on bacterial gene expression. Mol. Microbiol. 8: 5–14.

    Article  CAS  Google Scholar 

  47. Cladera-Olivera, F., G. R. Caron, and A. Brandelli (2004) Bacteriocin production by Bacillus licheniformis P40 in cheese whey using response surface methodology. Biochem. Eng. J. 21: 53–58.

    Article  CAS  Google Scholar 

  48. Mataragas, M., J. Metaxopoulos, M. Galiotou, and E. H. Drosinos (2003) Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci. 64: 265–271.

    Article  CAS  Google Scholar 

  49. Cabo, M. L., M. A. Murado, M. Gonzalez, and L. Pastoriza (2001) Effect of aeration and pH gradient on nisin production A mathematical model. Enz. Microbe Technol. 29: 264–273.

    Article  CAS  Google Scholar 

  50. De Vuyst, L. (1995) Nutritional factors affecting nisin production by Lactococcus lactis subsp lactis NIZO 22186 in a synthetic medium. J. Appl. Bacteriol. 78: 28–33.

    Article  CAS  Google Scholar 

  51. Motta, A. S. and A. Brandelli (2003) Influence of growth conditions on bacteriocin production by Brevibacterium linens. Appl. Microbiol. Biotechnol. 62: 163–167.

    Article  CAS  Google Scholar 

  52. Kim, W. S., R. J. Hall, and N. W. Dunn (1997) The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Appl. Microbiol. Biotechnol. 50: 429–433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Ganguli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Jain, A.K., Ghosh, M. et al. Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei . Biotechnol Bioproc E 17, 606–616 (2012). https://doi.org/10.1007/s12257-011-0631-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0631-4

Keywords

Navigation