Skip to main content
Log in

Synthetic regulatory tools for microbial engineering

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Microbial engineering requires accurate information about cellular metabolic networks and a set of molecular tools that can be predictably applied to the efficient redesign of such networks. Recent advances in the field of metabolic engineering and synthetic biology, particularly the development of molecular tools for synthetic regulation in the static and dynamic control of gene expression, have increased our ability to efficiently balance the expression of genes in various biological systems. It would accelerate the creation of synthetic pathways and genetic programs capable of adapting to environmental changes in real time to perform the programmed cellular behavior. In this paper, we review current developments in the field of synthetic regulatory tools for static and dynamic control of microbial gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nandagopal, N. and M. B. Elowitz (2011) Synthetic biology: Integrated gene circuits. Science 333: 1244–1248.

    Article  CAS  Google Scholar 

  2. Mitchell, W. (2011) Natural products from synthetic biology. Curr. Opin. Chem. Biol. 15: 505–515.

    Article  CAS  Google Scholar 

  3. Feng, Z. -H., Y. -S. Wang, and Y. -G. Zheng (2011) A new microtiter plate-based screening method for microorganisms producing Alpha-amylase inhibitors. Biotechnol. Bioprocess Eng. 16: 894–900.

    Article  CAS  Google Scholar 

  4. Meng, H., Y. Wang, Q. Hua, S. Zhang, and X. Wang (2011) In silico analysis and experimental improvement of taxadiene heterologous biosynthesis in Escherichia coli. Biotechnol. Bioprocess Eng. 16: 205–215.

    Article  CAS  Google Scholar 

  5. Keasling, J. D. (2008) Synthetic biology for synthetic chemistry. ACS. Chem. Biol. 3: 64–76.

    Article  CAS  Google Scholar 

  6. Meng, H., Z. Lu, Y. Wang, X. Wang, and S. Zhang (2011) In silico improvement of heterologous biosynthesis of erythromycin precursor 6-deoxyerythronolide B in Escherichia coli. Biotechnol. Bioprocess Eng. 16: 445–456.

    Article  CAS  Google Scholar 

  7. Won, W., C. Park, S. Lee, K. Lee, and J. Lee (2011) Parameter estimation and dynamic control analysis of central carbon metabolism in Escherichia coli. Biotechnol. Bioprocess Eng. 16: 216–228.

    Article  CAS  Google Scholar 

  8. Ajikumar, P. K., W. H. Xiao, K. E. Tyo, Y. Wang, F. Simeon, E. Leonard, O. Mucha, T. H. Phon, B. Pfeifer, and G. Stephanopoulos (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330: 70–74.

    Article  CAS  Google Scholar 

  9. Anderson, J. C., C. A. Voigt, and A. P. Arkin (2007) Environmental signal integration by a modular AND gate. Mol. Syst. Biol. 3: 133.

    Article  Google Scholar 

  10. Lee, S., E. Jeon, H. Yun, and J. Lee (2011) Improvement of fatty acid biosynthesis by engineered recombinant Escherichia coli. Biotechnol. Bioproc. Eng. 16: 706–713.

    Article  CAS  Google Scholar 

  11. Braatsch, S., S. Helmark, H. Kranz, B. Koebmann, and P. R. Jensen (2008) Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning. Biotechniques 45: 335–337.

    Article  CAS  Google Scholar 

  12. Miksch, G., F. Bettenworth, K. Friehs, E. Flaschel, A. Saalbach, T. Twellmann, and T. W. Nattkemper (2005) Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli. J. Biotechnol. 120: 25–37.

    Article  CAS  Google Scholar 

  13. De Mey, M., J. Maertens, G. J. Lequeux, W. K. Soetaert, and E. J. Vandamme (2007) Construction and model-based analysis of a promoter library for E. coli: An indispensable tool for metabolic engineering. BMC. Biotechnol. 7: 34.

    Article  Google Scholar 

  14. Rud, I., P. R. Jensen, K. Naterstad, and L. Axelsson (2006) A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiol. 152: 1011–1019.

    Article  CAS  Google Scholar 

  15. Jensen, P. R. and K. Hammer (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64: 82–87.

    CAS  Google Scholar 

  16. Solem, C. and P. R. Jensen (2002) Modulation of gene expression made easy. Appl. Environ. Microbiol. 68: 2397–2403.

    Article  CAS  Google Scholar 

  17. Nevoigt, E., J. Kohnke, C. R. Fischer, H. Alper, U. Stahl, and G. Stephanopoulos (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72: 5266–5273.

    Article  CAS  Google Scholar 

  18. Alper, H., C. Fischer, E. Nevoigt, and G. Stephanopoulos (2005) Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. U S A 102: 12678–12683.

    Article  CAS  Google Scholar 

  19. Qin, X., J. Qian, G. Yao, Y. Zhuang, S. Zhang, and J. Chu (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl. Environ. Microbiol. 77: 3600–3608.

    Article  CAS  Google Scholar 

  20. Blazeck, J., L. Liu, H. Redden, and H. Alper (2011) Tuning gene expression in Yarrowia lipolytica using a hybrid promoter approach. Appl. Environ. Microbiol. 22: 7905–7014.

    Article  Google Scholar 

  21. Davis, J. H., A. J. Rubin, and R. T. Sauer (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res. 39: 1131–1141.

    Article  CAS  Google Scholar 

  22. Kelly, J. R., A. J. Rubin, J. H. Davis, C. M. Ajo-Franklin, J. Cumbers, M. J. Czar, K. de Mora, A. L. Glieberman, D. D. Monie, and D. Endy (2009) Measuring the activity of BioBrick promoters using an in vivo reference standard. J. Biol. Eng. 3: 4.

    Article  Google Scholar 

  23. Seo, S. W., J. Yang, and G. Y. Jung (2009) Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli. Biotechnol. Bioeng. 104: 611–616.

    Article  CAS  Google Scholar 

  24. Park, Y. S., S. W. Seo, S. Hwang, H. S. Chu, J. H. Ahn, T. W. Kim, D. M. Kim, and G. Y. Jung (2007) Design of 5′-untranslated region variants for tunable expression in Escherichia coli. Biochem. Biophys. Res. Commun. 356: 136–141.

    Article  CAS  Google Scholar 

  25. de Smit, M. H. and J. van Duin (2003) Translational standby sites: How ribosomes may deal with the rapid folding kinetics of mRNA. J. Mol. Biol. 331: 737–743.

    Article  Google Scholar 

  26. de Smit, M. H. and J. van Duin (1994) Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244: 144–150.

    Article  Google Scholar 

  27. de Smit, M. H. and J. van Duin (1994) Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction. J. Mol. Biol. 235: 173–184.

    Google Scholar 

  28. de Smit, M. H. and J. van Duin (1990) Secondary structure of the ribosome binding site determines translational efficiency: A quantitative analysis. Proc. Natl. Acad. Sci. U S A 87: 7668–7672.

    Article  Google Scholar 

  29. Pfleger, B. F., D. J. Pitera, C. D. Smolke, and J. D. Keasling (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24: 1027–1032.

    Article  CAS  Google Scholar 

  30. Ochi, K. (2007) From microbial differentiation to ribosome engineering. Biosci. Biotechnol. Biochem. 71: 1373–1386.

    Article  CAS  Google Scholar 

  31. Ochi, K., S. Okamoto, Y. Tozawa, T. Inaoka, T. Hosaka, J. Xu, and K. Kurosawa (2004) Ribosome engineering and secondary metabolite production. Adv. Appl. Microbiol. 56: 155–184.

    Article  CAS  Google Scholar 

  32. Chin, J. W. (2006) Programming and engineering biological networks. Curr. Opin. Struct. Biol. 16: 551–556.

    Article  CAS  Google Scholar 

  33. Rackham, O. and J. W. Chin (2005) A network of orthogonal ribosome x mRNA pairs. Nat. Chem. Biol. 1: 159–166.

    Article  CAS  Google Scholar 

  34. Xia, X. X., Z. G. Qian, C. S. Ki, Y. H. Park, D. L. Kaplan, and S. Y. Lee (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc. Natl. Acad. Sci. U S A 107: 14059–14063.

    Article  CAS  Google Scholar 

  35. Salis, H. M., E. A. Mirsky, and C. A. Voigt (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27: 946–950.

    Article  CAS  Google Scholar 

  36. Lim, H. N., Y. Lee, and R. Hussein (2011) Fundamental relationship between operon organization and gene expression. Proc. Natl. Acad. Sci. U S A 108: 10626–10631.

    Article  CAS  Google Scholar 

  37. Dueber, J. E., G. C. Wu, G. R. Malmirchegini, T. S. Moon, C. J. Petzold, A. V. Ullal, K. L. Prather, and J. D. Keasling (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27: 753–759.

    Article  CAS  Google Scholar 

  38. Tsuji, S. Y., D. E. Cane, and C. Khosla (2001) Selective proteinprotein interactions direct channeling of intermediates between polyketide synthase modules. Biochem. 40: 2326–2331.

    Article  CAS  Google Scholar 

  39. Roughan, P. G. (1997) Stromal concentrations of coenzyme A and its esters are insufficient to account for rates of chloroplast fatty acid synthesis: Evidence for substrate channelling within the chloroplast fatty acid synthase. Biochem. J. 327: 267–273.

    CAS  Google Scholar 

  40. Clancy, K. and C. A. Voigt (2010) Programming cells: Towards an automated ‘Genetic Compiler’ Curr. Opin. Biotechnol. 21: 572–581.

    Article  CAS  Google Scholar 

  41. Yoon, S. H., S. H. Lee, A. Das, H. K. Ryu, H. J. Jang, J. Y. Kim, D. K. Oh, J. D. Keasling, and S. W. Kim (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J. Biotechnol. 140: 218–226.

    Article  CAS  Google Scholar 

  42. Ro, D. K., E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman, J. M. Ndungu, K. A. Ho, R. A. Eachus, T. S. Ham, J. Kirby, M. C. Chang, S. T. Withers, Y. Shiba, R. Sarpong, and J. D. Keasling (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943.

    Article  CAS  Google Scholar 

  43. Tamsir, A., J. J. Tabor, and C. A. Voigt (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469: 212–215.

    Article  CAS  Google Scholar 

  44. Cheung, J. and W. A. Hendrickson (2010) Sensor domains of two-component regulatory systems. Curr. Opin. Microbiol. 13: 116–123.

    Article  CAS  Google Scholar 

  45. Clarke, E. J. and C. A. Voigt (2011) Characterization of combinatorial patterns generated by multiple two-component sensors in E. coli that respond to many stimuli. Biotechnol. Bioeng. 108: 666–675.

    Article  CAS  Google Scholar 

  46. Hong, H. J., M. I. Hutchings, and M. J. Buttner (2008) Vancomycin resistance VanS/VanR two-component systems. Adv. Exp. Med. Biol. 631: 200–213.

    Article  CAS  Google Scholar 

  47. Prohinar, P., S. A. Forst, D. Reed, I. Mandic-Mulec, and J. Weiss (2002) OmpR-dependent and OmpR-independent responses of Escherichia coli to sublethal attack by the neutrophil bactericidal/permeability increasing protein. Mol. Microbiol. 43: 1493–1504.

    Article  CAS  Google Scholar 

  48. Tabor, J. J., H. M. Salis, Z. B. Simpson, A. A. Chevalier, A. Levskaya, E. M. Marcotte, C. A. Voigt, and A. D. Ellington (2009) A synthetic genetic edge detection program. Cell 137: 1272–1281.

    Article  Google Scholar 

  49. Sinha, J., S. J. Reyes, and J. P. Gallivan (2010) Reprogramming bacteria to seek and destroy an herbicide. Nat. Chem. Biol. 6: 464–470.

    Article  CAS  Google Scholar 

  50. Elowitz, M. B. and S. Leibler (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338.

    Article  CAS  Google Scholar 

  51. Gardner, T. S., C. R. Cantor, and J. J. Collins (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403: 339–342.

    Article  CAS  Google Scholar 

  52. Lee, S. K., H. H. Chou, B. F. Pfleger, J. D. Newman, Y. Yoshikuni, and J. D. Keasling (2007) Directed evolution of AraC for improved compatibility of arabinose- and lactose-inducible promoters. Appl. Environ. Microbiol. 73: 5711–5715.

    Article  CAS  Google Scholar 

  53. Cox, R. S., M. G. Surette, and M. B. Elowitz (2007) Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3: 145.

    Google Scholar 

  54. Lutz, R. and H. Bujard (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25: 1203–1210.

    Article  CAS  Google Scholar 

  55. Stock, A. M., V. L. Robinson, and P. N. Goudreau (2000) Twocomponent signal transduction. Annu. Rev. Biochem. 69: 183–215.

    Article  CAS  Google Scholar 

  56. Utsumi, R., R. E. Brissette, A. Rampersaud, S. A. Forst, K. Oosawa, and M. Inouye (1989) Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 245: 1246–1249.

    Article  CAS  Google Scholar 

  57. Farmer, W. R. and J. C. Liao (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18: 533–537.

    Article  CAS  Google Scholar 

  58. Nystrom, T. (1995) Glucose starvation stimulon of Escherichia coli: role of integration host factor in starvation survival and growth phase-dependent protein synthesis. J. Bacteriol. 177: 5707–5710.

    CAS  Google Scholar 

  59. Bulter, T., S. G. Lee, W. W. Wong, E. Fung, M. R. Connor, and J. C. Liao (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. U S A 101: 2299–2304.

    Article  CAS  Google Scholar 

  60. Fung, E., W. W. Wong, J. K. Suen, T. Bulter, S. G. Lee, and J. C. Liao (2005) A synthetic gene-metabolic oscillator. Nature 435: 118–122.

    Article  CAS  Google Scholar 

  61. Liang, J. C., R. J. Bloom, and C. D. Smolke (2011) Engineering biological systems with synthetic RNA molecules. Mol. Cell. 43: 915–926.

    Article  CAS  Google Scholar 

  62. Mironov, A. S., I. Gusarov, R. Rafikov, L. E. Lopez, K. Shatalin, R. A. Kreneva, D. A. Perumov, and E. Nudler (2002) Sensing small molecules by nascent RNA: A mechanism to control transcription in bacteria. Cell 111: 747–756.

    Article  CAS  Google Scholar 

  63. Winkler, W., A. Nahvi, and R. R. Breaker (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419: 952–956.

    Article  CAS  Google Scholar 

  64. Winkler, W. C., A. Nahvi, A. Roth, J. A. Collins, and R. R. Breaker (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428: 281–286.

    Article  CAS  Google Scholar 

  65. Batey, R. T., S. D. Gilbert, and R. K. Montange (2004) Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432: 411–415.

    Article  CAS  Google Scholar 

  66. Suess, B., B. Fink, C. Berens, R. Stentz, and W. Hillen (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 32: 1610–1614.

    Article  CAS  Google Scholar 

  67. Winkler, W. C., S. Cohen-Chalamish, and R. R. Breaker (2002) An mRNA structure that controls gene expression by binding FMN. Proc. Natl. Acad. Sci. U S A 99: 15908–15913.

    Article  CAS  Google Scholar 

  68. Muranaka, N., K. Abe, and Y. Yokobayashi (2009) Mechanismguided library design and dual genetic selection of synthetic OFF riboswitches. Chembiochem. 10: 2375–2381.

    Article  CAS  Google Scholar 

  69. Sharma, V., Y. Nomura, and Y. Yokobayashi (2008) Engineering complex riboswitch regulation by dual genetic selection. J. Am. Chem. Soc. 130: 16310–16315.

    Article  CAS  Google Scholar 

  70. Nomura, Y. and Y. Yokobayashi (2007) Reengineering a natural riboswitch by dual genetic selection. J. Am. Chem. Soc. 129: 13814–13815.

    Article  CAS  Google Scholar 

  71. Kim, D. S., V. Gusti, S. G. Pillai, and R. K. Gaur (2005) An artificial riboswitch for controlling pre-mRNA splicing. RNA 11: 1667–1677.

    Article  CAS  Google Scholar 

  72. Culler, S. J., K. G. Hoff, and C. D. Smolke (2010) Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330: 1251–1255.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyoo Yeol Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, S.W., Kim, S.C. & Jung, G.Y. Synthetic regulatory tools for microbial engineering. Biotechnol Bioproc E 17, 1–7 (2012). https://doi.org/10.1007/s12257-011-0563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0563-z

Keywords

Navigation