Skip to main content
Log in

Proteomic analysis of liver proteins in rats fed with a high-fat diet in response to capsaicin treatments

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Consumption of spicy foods has been reported to convey thermogenic properties. Thus, ingredients in these foods could be considered as potential agents for prevention of a positive energy balance and obesity. Capsaicin in particular is one of the main capsaicinoids, which is a pungent principle of red pepper, and is also utilized as a medicine. In this study, 2-dimensional gel electrophoresis (2-DE) was carried out to identify differential expression of liver proteins in rats fed with a high-fat diet (HFD) in response to capsaicin treatments. In addition, immunoblot analysis of some liver proteins was performed for validation of proteomic analysis and suggestions of a molecular action of capsaicin. Results of animal experiments revealed that weight gain of rats in the HFD + Cap group was decreased by 8% compared to the HFD control group. In our search for potential proteins associated with thermo-genesis and lipid metabolism, we analyzed differential expression patterns in rat liver using 2-DE. Proteomic analysis of liver samples demonstrated that approximately 120 spots were differentially expressed from a total of 950 matched spots, of which 23 spots have been identified by peptide mass finger printing using MALDI-TOF mass spectrometry. Protein levels of UCP2 and FAS were decreased, whereas those of p-AMPK, p-ACC, and CPT-1 were increased by capsaicin administration. These data suggest that the effect of capsaicin on energy expenditure and fatty acid oxidation in rat liver might be mediated through activation of the AMPK-ACC-malonyl-CoA metabolic signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haslam, D. W. and W. P. James (2005) Obesity. Lancet. 366: 1197–1209.

    Article  Google Scholar 

  2. Diepvens, K., K. R. Westerterp, and M. S. Westerterp-Plantenga (2007) Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292: 77–85.

    Google Scholar 

  3. Westerterp-Plantenga, M., K. Diepvens, A. M. Joosen, S. Berube-Parent, and A. Tremblay (2006) Metabolic effects of spices, teas, and caffeine. Physiol. Behav. 89: 85–91.

    Article  CAS  Google Scholar 

  4. Chun, M. S., T. S. Lee, and B. S. Noh (1994) The changes in capsaicin, dihydrocapsaicin and capsanthin in Kochujangs with different mashing methods. Food Sci. Biotechnol. 3: 104–108.

    Google Scholar 

  5. Yu, R., M. A. Choi, T. Kawada, B. S. Kim, I. S. Han, and H. Yoo (2002) Inhibitory effect of capsaicin against carcinogen-induced oxidative damage in rats. J. Food Sci. Nutr. 7: 67–71.

    CAS  Google Scholar 

  6. Lejeune, M. P., E. M. Kovacs, and M. S. Westerterp-Plantenga (2003) Effect of capsaicin on substrate oxidation and weight maintenance after modest body-weight loss in human subjects. Br. J. Nutr. 90: 651–659.

    Article  CAS  Google Scholar 

  7. Asai, A., K. Nakagawa, and T. Miyazawa (1999) Antioxidative effects of turmeric, rosemary and capsicum extracts on membrane phospholipid peroxidation and liver lipid metabolism in mice. Biosci. Biotechnol. Biochem. 63: 2118–2122.

    Article  CAS  Google Scholar 

  8. Baek, Y. M., H. J. Hwang, S. W. Kim, H. S. Hwang, S. H. Lee, J. A. Kim, and J. W. Yun (2008) A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics 8: 4748–4767.

    Article  CAS  Google Scholar 

  9. Watanabe, T., T. Kawada, M. Yamamoto, and K. Iwai (1987) Capsaicin, a pungent principle of hot red pepper, evokes catecholamine secretion from the adrenal medulla of anesthetized rats. Biochem. Biophys. Res. Commun. 142: 259–264.

    Article  CAS  Google Scholar 

  10. Watanabe, T., T. Kawada, M. Kurosawa, A. Sato, and K. Iwai (1988) Adrenal sympathetic efferent nerve and catecholamine secretion excitation caused by capsaicin in rats. Am. J. Physiol. 255: 23–27.

    Google Scholar 

  11. Yoshioka, M., K. Lim, S. Kikuzato, A. Kiyonaga, H. Tanaka, M. Shindo, and M. Suzuki (1995) Effects of red-pepper diet on the energy metabolism in men. J. Nutr. Sci. Vitaminol. 41: 647–656.

    CAS  Google Scholar 

  12. Tsi, D., A. K. Nah, Y. Kiso, T. Moritani, and H. Ono (2003) Clinical study on the combined effect of capsaicin, green tea extract and essence of chicken on body fat content in human subjects. J. Nutr. Sci. Vitaminol. 49: 437–441.

    CAS  Google Scholar 

  13. Szallasi, A. (2005) Piperine: Researchers discover new flavor in an ancient spice. Trends Pharmacol. Sci. 26: 437–439.

    CAS  Google Scholar 

  14. Yoshioka, M., S. St-Pierre, M. Suzuki, and A. Tremblay (1998) Effects of red pepper added to high-fat and high-carbohydrate meals on energy metabolism and substrate utilization in Japanese women. Br. J. Nutr. 80: 503–510.

    CAS  Google Scholar 

  15. Buettner, R., J. Scholmerich, and L. C. Bollheimer (2007) Highfat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring). 15: 798–808.

    Article  CAS  Google Scholar 

  16. Commerford, S. R., M. E. Bizeau, H. McRae, A. Jampolis, J. S. Thresher, and M. J. Pagliassotti (2001) Hyperglycemia compensates for diet-induced insulin resistance in liver and skeletal muscle of rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281: 1380–1389.

    Google Scholar 

  17. Guijarro, A., A. Laviano, and M. M. Meguid (2006) Hypothalamic integration of immune function and metabolism. Prog. Brain. Res. 153: 367–405.

    Article  CAS  Google Scholar 

  18. Levin, B. E., A. A. Dunn-Meynell, B. Balkan, and R. E. Keesey (1997) Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am. J. Physiol. 273: 725–730.

    Google Scholar 

  19. Jang, I., D. Hwang, J. Lee, K. Chae, Y. Kim, T. Kang, C. Kim, D. Shin, J. Hwang, Y. Huh, and J. Cho (2003) Physiological difference between dietary obesity-susceptible and obesity-resistant Sprague Dawley rats in response to moderate high fat diet. Exp. Anim. 52: 99–107.

    Article  CAS  Google Scholar 

  20. Dardevet, D., M. C. Moore, D. Remond, C. A. Everett-Grueter, and A. D. Cherrington (2006) Regulation of hepatic metabolism by enteral delivery of nutrients. Nutr. Res. Rev. 19: 161–173.

    Article  CAS  Google Scholar 

  21. Reddy, J. K. and M. S. Rao (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290: 852–858.

    Article  CAS  Google Scholar 

  22. Zeindl-Eberhart, E., S. Klugbauer, N. Dimitrijevic, P. R. Jungblut, S. Lamer, and H. M. Rabes (2001) Proteome analysis of rat hepatomas: Carcinogen-dependent tumor-associated protein variants. Electrophoresis 22: 3009–3018.

    Article  CAS  Google Scholar 

  23. Simpson, D.M., R. J. Beynon, D. H. Robertson, M. J. Loughran, and S. Haywood (2004) Copper-associated liver disease: A proteomics study of copper challenge in a sheep model. Proteomics 4: 524–536.

    Article  CAS  Google Scholar 

  24. Yokoyama, Y., Y. Kuramitsu, M. Takashima, N. Iizuka, T. Toda, S. Terai, I. Sakaida, M. Oka, K. Nakamura, and K. Okita (2004) Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. Proteomics 4: 2111–2116.

    Article  CAS  Google Scholar 

  25. Kuhla, B., D. Albrecht, S. Kuhla, and C. C. Metges (2009) Proteome analysis of fatty liver in feed-deprived dairy cows reveals interaction of fuel sensing, calcium, fatty acid, and glycogen metabolism. Physiol. Genomics. 37: 88–98.

    Article  Google Scholar 

  26. Newton, B. W., W. K. Russell, D. H. Russell, S. K. Ramaiah, and A. Jayaraman (2009) Liver proteome analysis in a rodent model of alcoholic steatosis. J. Proteome Res. 8: 1663–1671.

    Article  CAS  Google Scholar 

  27. Bradford, M. M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  28. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68: 850–858.

    Article  CAS  Google Scholar 

  29. Taboas, J. O. and R. J. Ceremsak (1967) A rapid hematoxylin and eosin stain. Tech. Bull. Regist. Med. Technol. 37: 119–120.

    CAS  Google Scholar 

  30. Flohe, L. (1971) Glutathione peroxidase: Enzymology and biological aspects. Klin. Wochenschr. 49: 669–683.

    Article  CAS  Google Scholar 

  31. de Haan, J. B., P. K. Witting, N. Stefanovic, J. Pete, M. Daskalakis, I. Kola, R. Stocker, and J. J. Smolich (2006) Lack of the antioxidant glutathione peroxidase-1 does not increase atherosclerosis in C57BL/J6 mice fed a high-fat diet. J. Lipid Res. 47: 1157–1167.

    Article  CAS  Google Scholar 

  32. Lieber, C. S., M. A. Leo, Q. Cao, K.M. Mak, C. Ren, A. Ponomarenko, X. Wang, and L. M. Decarli (2007) The Combination of S-adenosylmethionine and Dilinoleoylphosphatidylcholine attenuates non-alcoholic steatohepatitis produced in rats by a High-fat diet. Nutr. Res. 27: 565–573.

    Article  CAS  Google Scholar 

  33. Schreibelt, G., J. van Horssen, S. van Rossum, C. D. Dijkstra, B. Drukarch, and H. E. de Vries (2007) Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Res. Rev. 56: 322–330.

    Article  CAS  Google Scholar 

  34. Chen, X., H. Y. Zhong, J. H. Zeng, and J. Ge (2008) The pharmacological effect of polysaccharides from Lentinus edodes on the oxidative status and expression of VCAM-1mRNA of thoracic aorta endothelial cell in high-fat-diet rats. Carbohydr. Polym. 74: 445–450.

    Article  CAS  Google Scholar 

  35. Ma, M., G. H. Liu, Z. H. Yu, G. Chen, and X. Zhang (2009) Effect of the Lycium barbarum polysaccharides administration on blood lipid metabolism and oxidative stress of mice fed high-fat diet in vivo. Food Chem. 113: 872–877.

    Article  CAS  Google Scholar 

  36. Fujii, J. and N. Taniguchi (1999) Down regulation of superoxide dismutases and glutathione peroxidase by reactive oxygen and nitrogen species. Free Radic. Res. 31: 301–308.

    Article  CAS  Google Scholar 

  37. Mates, J. M. (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicol. 153: 83–104.

    Article  CAS  Google Scholar 

  38. Rodriguez, C., J. C. Mayo, R.M. Sainz, I. Antolin, F. Herrera, V. Martin, and R. J. Reiter (2004) Regulation of antioxidant enzymes: A significant role for melatonin. J. Pineal Res. 36: 1–9.

    Article  CAS  Google Scholar 

  39. Chen, H., L. Liu, J. Zhu, B. Xu, and R. Li (2010) Effect of soybean oligosaccharides on blood lipid, glucose levels and antioxidant enzymes activity in high fat rats. Food Chem. 119: 1633–1636.

    Article  CAS  Google Scholar 

  40. Banaszak, L. J. and R. A. Bradshaw (1975) Malate dehydrogenase. pp. 369–396. In: P. D. Boyer (3rd ed.). The Enzymes. Academic Press, NY, USA.

    Google Scholar 

  41. Tarze, A., A. Deniaud, M. Le Bras, E. Maillier, D. Molle, N. Larochette, N. Zamzami, G. Jan, G. Kroemer, and C. Brenner (2007) GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene. 26: 2606–2620.

    Article  CAS  Google Scholar 

  42. Stryer, L. (1988) Biochemistry. 3rd ed., Freeman, NY, USA.

    Google Scholar 

  43. Taketomi, S., E. Ishikawa, and H. Iwatsuka (1975) Lipogenic enzymes in two types of genetically obese animals, fatty rat and yellow KK mice. Horm. Metab. Res. 7: 242–246.

    Article  CAS  Google Scholar 

  44. Husain, M. and D. J. Steenkamp (1983) Electron transfer flavoprotein from pig liver mitochondria. A simple purification and re-evaluation of some of the molecular properties. Biochem. J. 209: 541–545.

    CAS  Google Scholar 

  45. Pie, J., N. Casals, B. Puisac, and F. G. Hegardt (2003) Molecular basis of 3-hydroxy-3-methylglutaric aciduria. J. Physiol. Biochem. 59: 311–321.

    Article  CAS  Google Scholar 

  46. Pie, J., E. Lopez-Vinas, B. Puisac, S. Menao, A. Pie, C. Casale, F. J. Ramos, F. G. Hegardt, P. Gomez-Puertas, and N. Casals (2007) Molecular genetics of HMG-CoA lyase deficiency. Mol. Genet. Metab. 92: 198–209.

    Article  CAS  Google Scholar 

  47. Fleury, C., M. Neverova, S. Collins, S. Raimbault, O. Champigny, C. Levi-Meyrueis, F. Bouillaud, M. F. Seldin, R. S. Surwit, D. Ricquier, and C. H. Warden (1997) Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15: 269–272.

    Article  CAS  Google Scholar 

  48. Kabat, A. P., R. W. Rose, J. Harris, and A. K. West (2003) Molecular identification of uncoupling proteins (UCP2 and UCP3) and absence of UCP1 in the marsupial Tasmanian bettong, Bettongia gaimardi. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 134: 71–77.

    Article  Google Scholar 

  49. Schrauwen, P. and M. Hesselink (2002) UCP2 and UCP3 in muscle controlling body metabolism. J. Exp. Biol. 205: 2275–2285.

    CAS  Google Scholar 

  50. Steinberg, G. R., S. L. Macaulay, M. A. Febbraio, and B. E. Kemp (2006) AMP-activated protein kinase—the fat controller of the energy railroad. Can. J. Physiol. Pharmacol. 84: 655–665.

    Article  CAS  Google Scholar 

  51. Fediuc, S., M. P. Gaidhu, and R. B. Ceddia (2006) Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells. J. Lipid Res. 47: 412–420.

    Article  CAS  Google Scholar 

  52. Dobrzyn, P., A. Dobrzyn, M. Miyazaki, P. Cohen, E. Asilmaz, D. G. Hardie, J. M. Friedman, and J. M. Ntambi (2004) Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc. Natl. Acad. Sci. 101: 6409–6414.

    Article  CAS  Google Scholar 

  53. Kawada, T., K. Hagihara, and K. Iwai (1986) Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J. Nutr. 116: 1272–1278.

    CAS  Google Scholar 

  54. Kawada, T., T. Watanabe, T. Takaishi, T. Tanaka, and K. Iwai (1986) Capsaicin-induced beta-adrenergic action on energy metabolism in rats: influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proc. Soc. Exp. Biol. Med. 183: 250–256.

    CAS  Google Scholar 

  55. Yoshioka, M., S. St-Pierre, V. Drapeau, I. Dionne, E. Doucet, M. Suzuki, and A. Tremblay (1999) Effects of red pepper on appetite and energy intake. Br. J. Nutr. 82: 115–123.

    CAS  Google Scholar 

  56. Yoshioka, M., E. Doucet, V. Drapeau, I. Dionne, and A. Tremblay (2001) Combined effects of red pepper and caffeine consumption on 24 h energy balance in subjects given free access to foods. Br. J. Nutr. 85: 203–211.

    Article  CAS  Google Scholar 

  57. Okada, Y. and H. Okajima (2001) Antioxidant effect of capsaicin on lipid peroxidation in homogeneous solution, micelle dispersions and liposomal membranes. Redox Rep. 6: 117–122.

    Article  CAS  Google Scholar 

  58. Ochi, T., Y. Takaishi, K. Kogure, and I. Yamauti (2003) Antioxidant activity of a new capsaicin derivative from Capsicum annuum. J. Nat. Prod. 66: 1094–1096.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Additional information

The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, JW., Hwang, H.S., Kim, D.H. et al. Proteomic analysis of liver proteins in rats fed with a high-fat diet in response to capsaicin treatments. Biotechnol Bioproc E 15, 534–544 (2010). https://doi.org/10.1007/s12257-010-0029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0029-8

Keywords

Navigation