Skip to main content
Log in

Strain improvement and metabolic flux modeling of wild-type and mutant Alcaligenes sp. NX-3 for synthesis of exopolysaccharide welan gum

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Low-energy nitrogen ion beam implantation technique was used for the strain improvement of Alcaligenes sp. NX-3 for the production of exopolysaccharide welan gum. A high welan gum producing mutant, Alcaligenes sp. NX-3-1, was obtained through 20 keV N+ ion beam irradiation. Starting at a concentration of 50 g/L of glucose, mutant NX-3-1 produced 25.0 g/L of welan gum after 66 h of cultivation in a 7.5 L bioreactor, which was 34.4% higher than that produced by the wild-type strain. The results of metabolic flux analysis showed that the glucose-6-phosphate and acetyl coenzyme A nodes were the principle and flexible nodes, respectively. At the glucose-6-phosphate node, the fraction of carbon measured from glucose-6-phosphate to glucose-1-phosphate was enhanced after mutagenesis, which indicated that more flux was used to synthesize welan gum in the mutant. By analyzing the activities of related enzymes in the biosynthetic pathway of sugar nucleotides essential for welan gum production, we found that the specific activities of phosphoglucomutase, UDP-glucose pyrophosphorylase, UDP-glucose dehydrogenase, and dTDP-glucose pyrophosphorylase in the mutant strain were higher than those in the wild-type strain. These improvements in enzyme activities could be due to the affected of ion beam implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vandamme, E. J., S. D. Baets, and A. Steinbüchel (2002) Polysaccharides I: Polysaccharides from prokaryotes. pp. 1–19. In: E. J. Vandamme (eds.). Biopolymers. Wiley-VCH, NY, USA.

    Google Scholar 

  2. Banik, R. M., B. Kanari, and S. N. Upadhyay (2000) Exopolysaccharide of the gellan family: Prospects and potential. World J. Microbiol. Biotechnol. 16: 407–414.

    Article  CAS  Google Scholar 

  3. Chandrasekaran, R., A. Radha, and E. J. Lee (1994) Structural roles of calcium ions and side chains in welan: An X-ray study. Carbohydr. Res. 252: 183–207.

    CAS  Google Scholar 

  4. Kang, K. S., G. T. Veeder, and I. W. Cottrell (1983) Some novel bacterial polysaccharides of recent development. pp. 231–253. In: M. E. Bushell (eds.). Microbial Polysaccharides. Elsevier, NY, USA.

    Google Scholar 

  5. Li, S., H. Xu, and N. Shi (2004) Production of microbial polysaccharides by fermentation. Food and Fermentation Industries 30: 6–9.

    Google Scholar 

  6. Hsu, C. H. and Y. M. Lo (2003) Characterization of xanthan gum biosynthesis in a centrifugal, packed-bed reactor using metabolic flux analysis. Proc. Biochem. 38: 1617–1625.

    Article  CAS  Google Scholar 

  7. Yu, Z. L., J. G. Deng, J. J. He, Y. P. Huo, Y. J. Wu, X. D. Wang, and G. F. Lui (1991) Mutation breeding by ion implantation. Nucl. Instrum. Methods. Phys. Res. Sec. B 59: 705–708.

    Article  Google Scholar 

  8. Feng, H. Y., Z. L. Yu, and P. K. Chu (2006) Ion implantation of organisms. Mater. Sci. Eng. R 54: 49–120.

    Article  Google Scholar 

  9. Yuan, C. L., J. Wang, and Y. Shang (2002) Production of arachidonic acid by Mortierella alpina I49-N18. Food Technol. Biotechnol. 40: 311–315.

    CAS  Google Scholar 

  10. Ge, C. M., Y. G. Yang, Y. H. Fan, W. Li, R. R. Pan, Z. M. Zheng, and Z. L. Yu (2008) Improvement of L(+)-lactic acid production of Rhizopus Oryzae by low-energy ions and analysis of its mechanism. Plasma Sci. Technol. 10: 131–135.

    Article  CAS  Google Scholar 

  11. Xu, T. T., Z. Z. Bai, L. J. Wang, and B. F. He (2010) Breeding of D(−)-lactic acid high producing strain by low-energy ion implantation and preliminary analysis of related metabolism. Appl. Biochem. Biotechnol. 160: 314–321.

    Article  CAS  Google Scholar 

  12. Shimizu, K. (2000) An overview on metabolic systems engineering approach and its future perspectives for efficient microbial fermentation. J. Chin. Inst. Chem. Eng. 31: 429–442.

    CAS  Google Scholar 

  13. Bai, D. M., X. M. Zhao, X. G. Li, and S. M. Xu (2004) Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production. Biotechnol. Bioeng. 88: 681–689.

    Article  CAS  Google Scholar 

  14. Bai, D. M., X. M. Zhao, X. G. Li, and S. M. Xu (2004) Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants. Biochem. Eng. J. 18: 41–48.

    Article  CAS  Google Scholar 

  15. Bailey, J. E. (1998) Mathematical modeling and analysis in biochemical engineering: Past accomplishments and future opportunities. Biotechnol. Prog. 14: 8–20.

    Article  CAS  Google Scholar 

  16. Vartak, N. B., C. C. Lin, J. M. Cleary, M. J. Fagan, and M. H. Saier Jr (1995) Glucose metabolism in ‘Sphingomonas elodea’: Pathway engineering via construction of a glucose-6-phosphate dehydrogenase insertion mutant. Microbiol. 141: 2339–2350.

    Article  CAS  Google Scholar 

  17. Zheng, Z. Y., J. W. Lee, X. B. Zhan, Z. P. Shi, L. Wang, L. Zhu, J. R. Wu, and C. C. Lin (2007) Effect of metabolic structures and energy requirements on curdlan production by Alcaligenes faecalis. Biotechnol. Bioproc. Eng. 12: 359–365.

    Article  CAS  Google Scholar 

  18. Ng, F. M. W. and E. A. Dawes (1973) Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate. Biochem. J. 132: 129–140.

    CAS  Google Scholar 

  19. Videira, P. A., L. L. Cortes, A. M. Fialho, and I. Sá-Correia (2000) Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Appl. Env. Microbiol. 66: 2252–2258.

    Article  CAS  Google Scholar 

  20. Sá-Correia, I., A. M. Fialho, P. Videira, L. M. Moreira, A. R. Marques, and H. Albano (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: Genes, enzymes and exopolysaccharide production engineering. J. Ind. Microbiol. Biotechnol. 29: 170–176.

    Article  Google Scholar 

  21. Arrecubieta, C., E. Garcia, and R. Lopez (1996) Demonstration of UDP-glucose dehydrogenase activity in cell extracts of Escherichia coli expressing the pneumococcal cap3A gene required for the synthesis of type 3 capsular polysaccharide. J. Bacteriol. 178: 2971–2974.

    CAS  Google Scholar 

  22. Silva, E., A. R. Marques, A. M. Fialho, A. T. Granja, and I. Sá-Correia (2005) Proteins encoded by Sphingomonas elodea ATCC 31461 rmlA and ugpG genes, involved in gellan gum biosynthesis, exhibit both dTDP- and UDP-glucose pyrophosphorylase activities. Appl. Env.. Microbiol. 71: 4703–4712.

    Article  CAS  Google Scholar 

  23. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  24. Ampe, F., J. L. Uribelarrea, G. M. F. Aragao, and N. D. Lindley (1997) Benzoate degradation via the ortho pathway in Alcaligenes eutrophus is perturbed by succinate. Appl. Environ. Microbiol. 63: 2765–2770.

    CAS  Google Scholar 

  25. Su, C. X., W. Zhou, Y. H. Fan, W. Li, S. G. Zhao, and Z. L. Yu (2006) Mutation breeding of chitosanase-producing strain Bacillus sp. S65 by low-energy ion implantation. J. Ind. Microbiol. Biotechnol. 33: 1037–1042.

    Article  CAS  Google Scholar 

  26. Vallino, J. J. and G. Stephanopoulos (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41: 633–646.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Xu, H., Li, S. et al. Strain improvement and metabolic flux modeling of wild-type and mutant Alcaligenes sp. NX-3 for synthesis of exopolysaccharide welan gum. Biotechnol Bioproc E 15, 777–784 (2010). https://doi.org/10.1007/s12257-010-0021-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0021-3

Keywords

Navigation