Skip to main content

Advertisement

Log in

Systematic Investigation of Expression of G2/M Transition Genes Reveals CDC25 Alteration in Nonfunctioning Pituitary Adenomas

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Dysregulation of G1/S checkpoint of cell cycle has been reported in pituitary adenomas. In addition, our previous finding showing that deregulation of Wee1 kinase by microRNAs together with other studies demonstrating alteration of G2/M transition in nonfunctioning pituitary adenomas (NFPAs) suggest that G2/M transition may also be important in pituitary tumorigenesis. To systematically study the expression of members of the G2/M transition in NFPAs and to investigate potential microRNA (miRNA) involvement. Totally, 80 NFPA and 14 normal pituitary (NP) tissues were examined. Expression of 46 genes encoding members of the G2/M transition was profiled on 34 NFPA and 10 NP samples on TaqMan Low Density Array. Expression of CDC25A and two miRNAs targeting CDC25A were validated by individual quantitative real time PCR using TaqMan assays. Protein expression of CDC25A, CDC25C, CDK1 and phospho-CDK1 (Tyr-15) was investigated on tissue microarray and immunohistochemistry. Several genes’ expression alteration were observed in NFPA compared to normal tissues by transcription profiling. On protein level CDC25A and both the total and the phospho-CDK1 were overexpressed in adenoma tissues. CDC25A correlated with nuclear localized CDK1 (nCDK1) and with tumor size and nCDK1 with Ki-67 index. Comparing primary vs. recurrent adenomas we found that Ki-67 proliferation index was higher and phospho-CDK1 (inactive form) was downregulated in recurrent tumors compared to primary adenomas. Investigating the potential causes behind CDC25A overexpression we could not find copy number variation at the coding region nor expression alteration of CDC25A regulating transcription factors however CDC25A targeting miRNAs were downregulated in NFPA and negatively correlated with CDC25A expression. Our results suggest that among alterations of G2/M transition of the cell cycle, overexpression of the CDK1 and CDC25A may have a role in the pathogenesis of the NFPA and that CDC25A is potentially regulated by miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro Oncol Suppl 5:v1–49

    Article  Google Scholar 

  2. McDowell BD, Wallace RB, Carnahan RM, Chrischilles EA, Lynch CF, Schlechte JA (2011) Demographic differences in incidence for pituitary adenoma. Pituitary 14:23–30

    Article  PubMed  PubMed Central  Google Scholar 

  3. Daly AF, Tichomirowa MA, Beckers A (2009) The epidemiology and genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 23:543–554

    Article  CAS  PubMed  Google Scholar 

  4. Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, McCutcheon IE (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619

    Article  PubMed  Google Scholar 

  5. Tjörnstrand A, Gunnarsson K, Evert M, Holmberg E, Ragnarsson O, Rosén T, Filipsson Nyström H (2014) The incidence rate of pituitary adenomas in western Sweden for the period 2001-2011. Eur J Endocrinol 171:519–526

    Article  PubMed  Google Scholar 

  6. Beckers A (2010) Higher prevalence of clinically relevant pituitary adenomas confirmed. Clin Endocrinol (Oxf) 72:290–291

    Article  Google Scholar 

  7. Fernandez A, Karavitaki N, Wass JA (2010) Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 72:377–382

    Article  Google Scholar 

  8. Heaney AP (2005) Pituitary tumour pathogenesis. Br Med Bull 75–76:81–97

    PubMed  Google Scholar 

  9. Musat M, Morris DG, Korbonits M, Grossman AB (2010) Cyclins and their related proteins in pituitary tumourigenesis. Mol Cell Endocrinol 326:25–29

    Article  CAS  PubMed  Google Scholar 

  10. Ogino A, Yoshino A, Katayama Y, Watanabe T, Ota T, Komine C, Yokoyama T, Fukushima T (2005) The p15(INK4b)/p16(INK4a)/RB1 pathway is frequently deregulated in human pituitary adenomas. J Neuropathol Exp Neurol 64:398–403

    Article  CAS  PubMed  Google Scholar 

  11. Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T, Komine C, Yokoyama T, Fukushima T (2007) Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 83:153–162

    Article  CAS  PubMed  Google Scholar 

  12. Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A (2005) Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 90:2179–2186

    Article  CAS  PubMed  Google Scholar 

  13. Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Klibanski A (2008) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93:4119–4125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simpson DJ, Frost SJ, Bicknell JE, Broome JC, McNicol AM, Clayton RN, Farrell WE (2001) Aberrant expression of G (1)/S regulators is a frequent event in sporadic pituitary adenomas. Carcinogenesis 22:1149–1154

    Article  CAS  PubMed  Google Scholar 

  15. Jordan S, Lidhar K, Korbonits M, Lowe DG, Grossman AB (2000) Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol 143:R1–R6

    Article  CAS  PubMed  Google Scholar 

  16. Turner HE, Nagy Z, Sullivan N, Esiri MM, Wass JA (2000) Expression analysis of cyclins in pituitary adenomas and the normal pituitary gland. Clin Endocrinol (Oxf) 53:337–344

    Article  CAS  Google Scholar 

  17. Butz H, Liko I, Czirjak S, Igaz P, Khan MM, Zivkovic V, Balint K, Korbonits M, Racz K, Patocs A (2010) Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95:E181–E191

    Article  CAS  PubMed  Google Scholar 

  18. Backert S, Gelos M, Kobalz U, Hanski ML, Bohm C, Mann B, Lovin N, Gratchev A, Mansmann U, Moyer MP, Riecken EO, Hanski C (1999) Differential gene expression in colon carcinoma cells and tissues detected with a cDNA array. Int J Cancer 82:868–874

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida T, Tanaka S, Mogi A, Shitara Y, Kuwano H (2004) The clinical significance of Cyclin B1 and Wee1 expression in non-small-cell lung cancer. Ann Oncol 15:252–256

    Article  CAS  PubMed  Google Scholar 

  20. Zhan X, Desiderio DM (2010) Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yu R, Ren SG, Melmed S (2002) Proteasome inhibitors induce apoptosis in growth hormone- and prolactin-secreting rat pituitary tumor cells. J Endocrinol 174:379–386

    Article  CAS  PubMed  Google Scholar 

  22. Yang JH, Hsia TC, Kuo HM, Chao PD, Chou CC, Wei YH, Chung JG (2006) Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos 34:296–304

    Article  CAS  PubMed  Google Scholar 

  23. Al-Shraim M, Asa SL (2006) The 2004 World Health Organization classification of pituitary tumors: what is new? Acta Neuropathol 111:1–7

    Article  PubMed  Google Scholar 

  24. Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz K, Patócs A (2011) MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary 14:112–124

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi I, Oka H, Naritaka H, Sato Y, Fujii K, Kameya T (2002) Expression of Pit-1 and growth hormone-releasing hormone receptor mRNA in human pituitary adenomas: difference among functioning, silent, and other nonfunctioning adenomas. Endocr Pathol 13:83–98

    Article  CAS  PubMed  Google Scholar 

  26. Asa SL, Bamberger AM, Cao B, Wong M, Parker KL, Ezzat S (1996) The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab 81:2165–2170

    CAS  PubMed  Google Scholar 

  27. Daniely M, Aviram A, Adams EF, Buchfelder M, Barkai G, Fahlbusch R, Goldman B, Friedman E (1998) Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab 83:1801–1805

    CAS  PubMed  Google Scholar 

  28. Metzger AK, Mohapatra G, Minn YA, Bollen AW, Lamborn K, Waldman FM, Wilson CB, Feuerstein BG (1999) Multiple genetic aberrations including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg 90:306–314

    Article  CAS  PubMed  Google Scholar 

  29. Harada K, Nishizaki T, Ozaki S, Kubota H, Harada K, Okamura T, Ito H, Sasaki K (1999) Cytogenetic alterations in pituitary adenomas detected by comparative genomic hybridization. Cancer Genet Cytogenet 112:38–41

    Article  CAS  PubMed  Google Scholar 

  30. Trautmann K, Thakker RV, Ellison DW, Ibrahim A, Lees PD, Harding B, Fischer C, Popp S, Bartram CR, Jauch A (2001) Chromosomal aberrations in sporadic pituitary tumors. Int J Cancer 91:809–814

    Article  CAS  PubMed  Google Scholar 

  31. Szymas J, Schluens K, Liebert W, Petersen I (2002) Genomic instability in pituitary adenomas. Pituitary 5:211–219

    Article  CAS  PubMed  Google Scholar 

  32. Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades K, Edwards MG, Geraci M, Kleinschmidt-DeMasters BK, Lillehei KO, Wierman ME (2011) Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology 152:3603–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elston MS, Gill AJ, Conaglen JV, Clarkson A, Shaw JM, Law AJ, Cook RJ, Little NS, Clifton-Bligh RJ, Robinson BG, McDonald KL (2008) Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149:1235–1242

    Article  CAS  PubMed  Google Scholar 

  34. Evans CO, Young AN, Brown MR, Brat DJ, Parks JS, Neish AS, Oyesiku NM (2001) Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab 86:3097–3107

    CAS  PubMed  Google Scholar 

  35. Morris DG, Musat M, Czirják S, Hanzély Z, Lillington DM, Korbonits M, Grossman AB (2005) Differential gene expression in pituitary adenomas by oligonucleotide array analysis. Eur J Endocrinol 153:143–151

    Article  CAS  PubMed  Google Scholar 

  36. Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, Oyesiku NM (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 65:10214–10222

    Article  CAS  PubMed  Google Scholar 

  37. Zhan X, Desiderio DM (2010) Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics. 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  38. Boutros R, Lobjois V, Ducommun B (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7:495–507

    Article  CAS  PubMed  Google Scholar 

  39. Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD (2007) Using expression profiling data to identify human microRNA targets. Nat Methods. 4(12):1045–1049

    Article  CAS  PubMed  Google Scholar 

  40. Shi L, Zhang J, Pan T, Zhou J, Gong W, Liu N, Fu Z, You Y (2010) MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res 1312:120–126

    Article  CAS  PubMed  Google Scholar 

  41. Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope A, Larusso N (2008) MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest 118:3714–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Oliveira PE, Zhang L, Wang Z, Lazo JS (2009) Hypoxia-mediated regulation of Cdc25A phosphatase by p21 and miR-21. Cell Cycle 8:3157–3164

    Article  Google Scholar 

  43. Sarkar S, Dey BK, Dutta A (2010) MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell 21:2138–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, Yu Q (2009) miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 23:2388–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Galaktionov K, Beach D (1991) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67:1181–1194

    Article  CAS  PubMed  Google Scholar 

  46. Sadhu K, Reed SI, Richardson H, Russell P (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci U S A 87:5139–5143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fernandez-Vidal A, Mazars A, Manenti S (2008) CDC25A: a rebel within the CDC25 phosphatases family? Anticancer Agents Med Chem 8:825–831

    Article  CAS  PubMed  Google Scholar 

  48. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J (2002) Regulation of G (2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J 21:5911–5920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li M, Yin S, Yuan J, Wei L, Ai JS, Hou Y, Chen DY, Sun QY (2008) Cdc25A promotes G2/M transition in oocytes. Cell Cycle 7:1301–1302

    Article  CAS  PubMed  Google Scholar 

  50. Melixetian M, Klein DK, Sørensen CS, Helin K (2009) NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 11:1247–1253

    Article  CAS  PubMed  Google Scholar 

  51. Kristjansdottir K, Rudolph J (2004) Cdc25 phosphatases and cancer. Chem Biol 11:1043–1051

    Article  CAS  PubMed  Google Scholar 

  52. Wierinckx A, Auger C, Devauchelle P, Reynaud A, Chevallier P, Jan M, Perrin G, Fèvre-Montange M, Rey C, Figarella-Branger D, Raverot G, Belin MF, Lachuer J, Trouillas J (2007) A diagnostic marker set for invasion, proliferation, and aggressiveness of prolactin pituitary tumors. Endocr Relat Cancer 14:887–900

    Article  CAS  PubMed  Google Scholar 

  53. Raverot G, Wierinckx A, Dantony E, Auger C, Chapas G, Villeneuve L, Brue T, Figarella-Branger D, Roy P, Jouanneau E, Jan M, Lachuer J, Trouillas J (2010) Prognostic factors in prolactin pituitary tumors: clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up. J Clin Endocrinol Metab 95:1708–1716

    Article  CAS  PubMed  Google Scholar 

  54. Mraz M, Dolezalova D, Plevova K, Stano Kozubik K, Mayerova V, Cerna K, Musilova K, Tichy B, Pavlova S, Borsky M, Verner J, Doubek M, Brychtova Y, Trbusek M, Hampl A, Mayer J, Pospisilova S (2012) MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia. Blood 119:2110–2113

    Article  CAS  PubMed  Google Scholar 

  55. Chien WW, Domenech C, Catallo R, Kaddar T, Magaud JP, Salles G, Ffrench M (2011) Cyclin-dependent kinase 1 expression is inhibited by p16(INK4a) at the post-transcriptional level through the microRNA pathway. Oncogene 30:1880–1891

    Article  CAS  PubMed  Google Scholar 

  56. Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18:181–187

    Article  CAS  PubMed  Google Scholar 

  57. Li XH, Wang EL, Zhou HM, Yoshimoto K, Qian ZR (2014) MicroRNAs in human pituitary adenomas. Int J Endocrinol 2014:435171

    PubMed  PubMed Central  Google Scholar 

  58. Sivapragasam M, Rotondo F, Lloyd RV, Scheithauer BW, Cusimano M, Syro LV, Kovacs K (2011) MicroRNAs in the human pituitary. Endocr Pathol 22:134–143

    Article  CAS  PubMed  Google Scholar 

  59. Liang S, Chen L, Huang H, Zhi D (2013) The experimental study of miRNA in pituitary adenomas. Turk Neurosurg 23:721–727

    PubMed  Google Scholar 

  60. Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377

    Article  CAS  PubMed  Google Scholar 

  61. D'Angelo D, Palmieri D, Mussnich P, Roche M, Wierinckx A, Raverot G, Fedele M, Croce CM, Trouillas J, Fusco A (2012) Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab 97:E1128–E1138

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded by National Development Agency (KTIA_AIK-2-2012-0010 to Karoly Racz) and by Hungarian Scientific Research Grant (OTKA PD116093 to Henriett Butz). Attila Patocs received the „Lendulet” grant from Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henriett Butz.

Ethics declarations

Competing Interests

The authors have declared that no competing interests exist.

Electronic supplementary material

Supplementary Fig. 1.

(A) Expression of anterior pituitary hormones’ transcripts and POU1F1 transcription factor. (B) Endogenous controls in normal (NP) and nonfunctioning pituitary adenoma (NFPA) tissues. (GIF 35 kb)

High resolution image (TIFF 2.98 mb)

Supplementary Fig. 2.

Correlations among the G2/M mRNA expression levels. Red indicates positive, green indicates negative correlations (in all cases p<0.05). Black represents no correlation. (GIF 54 kb)

High resolution image (TIFF 4.02 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butz, H., Németh, K., Czenke, D. et al. Systematic Investigation of Expression of G2/M Transition Genes Reveals CDC25 Alteration in Nonfunctioning Pituitary Adenomas. Pathol. Oncol. Res. 23, 633–641 (2017). https://doi.org/10.1007/s12253-016-0163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-016-0163-5

Keywords

Navigation