Skip to main content
Log in

Effect of Concomitant Radiochemotherapy on Invasion Potential of Glioblastoma

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Glioblastoma (GBM) is the most common primary brain tumor in adults with inevitable recurrence after oncotherapy. The insufficient effect of “gold standard” temozolomide-based concomitant radiochemotherapy may be due to the inability to prevent tumor cell invasion. Peritumoral infiltration depends mainly on the interaction between extracellular matrix (ECM) components and cell membrane receptors. Changes in invasive behaviour after oncotherapy can be evaluated at the molecular level by determining the RNA expression and protein levels of the invasion-related ECM components. The expression of nineteen ECM molecules was determined at both RNA and protein levels in thirty-one GBM samples. Fifteen GBM samples originated from the first surgical procedure on patients before oncotherapy, and sixteen GBM samples were collected at the second surgery due to local recurrence after concomitant chemoirradiation. RNA expressions were measured with qRT-PCR, and protein levels were determined by quantitative analysis of Western blots. Only MMP-9 RNA transcript level was reduced (p < 0.05) whereas at protein level, eight molecules showed changes concordant with RNA expression with significant decrease in brevican only. The results suggest that concomitant radiochemotherapy does not have sufficient impact on the expression of invasion-related ECM components of glioblastoma, oncotherapy does not significantly affect its invasive behavior. To avoid the spread of tumors into the brain parenchyma, supplementation of antiproliferative treatment with anti-invasive agents may be worth consideration in oncotherapy for glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Murnyák B, Csonka T, Hegyi K, Méhes G, Klekner Á, Hortobágyi T (2013) Occurrence and molecular pathology of high grade gliomas. (in Hungarian). Ideggyogy Sz 66:312–321

    PubMed  Google Scholar 

  2. Gurney JG, Kadan-Lottick N (2001) Brain and other central nervous system tumors: rates, trends, and epidemiology. Curr Opin Oncol 13(3):160–166

    Article  CAS  PubMed  Google Scholar 

  3. Chaichana KL, Zadnik P, Weingart JD, Olivi A, Gallia GL, Blakeley J, Lim M, Brem H, Quiñones-Hinojosa A (2013) Multiple resections for patients with glioblastoma: prolonging survival. J Neurosurg 118(4):812–820

    Article  PubMed Central  PubMed  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ (2005) Radiotherapy plus concomitant and adjuvant temozolimide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  5. Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205–2218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Petrás M, Hutóczki G, Varga I, Vereb G, Szöllosi J, Bognar L, Ruszthi P, Kenyeres A, Tóth J, Hanzély Z, Scholtz B, Klekner A (2009) Expression pattern of invasion-related molecules in brain tumors of different origin. Magy Onkol 53(3):253–258

    Article  PubMed  Google Scholar 

  7. Klekner A, Varga I, Bognár L, Hutóczki G, Kenyeres A, Tóth J, Hanzély Z, Scholtz B (2010) Extracellular matrix of cerebral tumors with different invasiveness. Ideggyogy Sz 63(1–2):38–43

    PubMed  Google Scholar 

  8. Varga I, Hutóczki G, Petrás M, Scholtz B, Mikó E, Kenyeres A, Tóth J, Zahuczky G, Bognár L, Hanzély Z, Klekner A (2010) Expression of invasion-related extracellular matrix molecules in human glioblastoma versus intracerebral lung adenocarcinoma metastasis. Cen Eur Neurosurg 71(4):173–180

    Article  CAS  Google Scholar 

  9. Varga I, Hutóczki G, Szemcsák CD, Zahucky G, Tóth J, Adamecz Z, Kenyeres A, Bognár L, Hanzély Z, Klekner A (2012) Brevican, neurocan, tenascin-C and versican are mainly responsible for the invasiveness of low-grade astrocytoma. Pathol Oncol Res 18(2):413–420

    Article  CAS  PubMed  Google Scholar 

  10. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  12. Iuga C, Seicean A, Iancu C, Buiga R, Sappa PK, Völker U, Hammer E (2014) Proteomic identification of potential prognostic biomarkers in resectable pancreatic ductal adenocarcinoma. Proteomics 14(7–8):945–955

    Article  CAS  PubMed  Google Scholar 

  13. Dogan A (2014) Advances in clinical applications of tissue proteomics: opportunities and challenges. Expert Rev Proteomics 11(5):531–533

    Article  CAS  PubMed  Google Scholar 

  14. Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222

    Article  PubMed Central  PubMed  Google Scholar 

  15. Blankley RT, Fisher C, Westwood M, North R, Baker PN, Walker MJ, Williamson A, Whetton AD, Lin W, McCowan L, Roberts CT, Cooper GJ, Unwin RD, Myers JE (2013) A label-free selected reaction monitoring workflow identifies a subset of pregnancy specific glycoproteins as potential predictive markers of early-onset pre-eclampsia. Mol Cell Proteomics 12(11):3148–3159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Martínez-Aguilar J, Molloy MP (2013) Label-free selected reaction monitoring enables multiplexed quantitation of S100 protein isoforms in cancer cells. J Proteome Res 12(8):3679–3688

    Article  PubMed  Google Scholar 

  17. Andersen AP (1978) Postoperative irradiation of glioblastomas. Results in a randomized series. Acta Radiol Oncol Radiat Phys Biol 17(6):475–484

    Article  CAS  PubMed  Google Scholar 

  18. Nieder C, Andratschke N, Wiedenmann N, Busch R, Grosu AL, Molls M (2004) Radiotherapy for high-grade Gliomas. Does altered fractionation improve the Outcome? Strahlenther Onkol 180(7):401–7.

  19. Souhami L, Seiferheld W, Brachman D, Podgorsak EB, Werner-Wasik M, Lustig R, Schultz CJ, Sause W, Okunieff P, Buckner J, Zamorano L, Mehta MP, Curran Jr WJ (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of radiation therapy oncology group 93–05 protocol. Int J Radiat Oncol Biol Phys 60(3):853–860

    Article  PubMed  Google Scholar 

  20. Shirazi HA, Grimm S, Raizer J, Mehta MP (2011) Combined modality approaches in the management of adult glioblastoma. Front Oncol 1:36

    Article  PubMed Central  PubMed  Google Scholar 

  21. Newlands ES, Stevens MFG, Wedge SR, Wheelhouse RT, Brock C (1997) Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23:35–61

    Article  CAS  PubMed  Google Scholar 

  22. Mannas JP, Lightner DD, Defrates SR, Pittman T, Villano JL (2014) Long-term treatment with temozolomide in malignant glioma. J Clin Neurosci 21(1):121–123

    Article  CAS  PubMed  Google Scholar 

  23. Garside R, Pitt M, Anderson R, Rogers G, Dyer M, Mealing S, Somerville M, Price A, Stein K (2007) The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation. Health Technol Assess 11(45):III-IV–IX-221

    Article  PubMed  Google Scholar 

  24. Koukourakis GV, Kouloulias V, Zacharias G, Papadimitriou C, Pantelakos P, Maravelis G, Fotineas A, Beli I, Chaldeopoulos D, Kouvaris J (2009) Temozolomide with radiation therapy in high grade brain gliomas: pharmaceuticals considerations and efficacy; a review article. Molecules 14(4):1561–1577

    Article  CAS  PubMed  Google Scholar 

  25. Bobola MS, Kolstoe DD, Blank A, Silber JR (2010) Minimally cytotoxic doses of temozolomide produce radiosensitization in human glioblastoma cells regardless of MGMT expression. Mol Cancer Ther 9(5):1208–1218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Vehlow A, Cordes N (2013) Invasion as target for therapy of glioblastoma multiforme. Biochim Biophys Acta 1836(2):236–244

    CAS  PubMed  Google Scholar 

  27. Zhao WJ, Zhang W, Li GL, Cui Y, Shi ZF, Yuan F (2012) Differential expression of MMP-9 and AQP4 in human glioma samples. Folia Neuropathol 50(2):176–186

    PubMed  Google Scholar 

  28. Trog D, Yeghiazaryan K, Fountoulakis M, Friedlein A, Moenkemann H, Haertel N, Schueller H, Breipohl W, Schild H, Leppert D, Golubnitschaja O (2006) Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. Eur J Pharmacol 542(1–3):8–15

    Article  CAS  PubMed  Google Scholar 

  29. Gary SC, Kelly GM, Hockfield S (1998) BEHAB/brevican: a brain-specific lectican implicated in gliomas and glial cell motility. Curr Opin Neurobiol 8(5):576–581

    Article  CAS  PubMed  Google Scholar 

  30. Viapiano MS, Bi WL, Piepmeier J, et al (2005) Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas. Cancer Res 65(15):6726–6733

    Article  CAS  PubMed  Google Scholar 

  31. Nutt CL, Matthews RT, Hockfield S (2001) Glial tumor invasion: a role for the upregulation and cleavage of BEHAB/brevican. Neuroscientist 7(2):113–122

    Article  CAS  PubMed  Google Scholar 

  32. Gary SC, Hockfield S (2000) BEHAB/brevican: an extracellular matrix component associated with invasive glioma. Clin Neurosurg 47:72–82

    CAS  PubMed  Google Scholar 

  33. Hu B, Kong LL, Matthews RT, et al (2008) The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J Biol Chem 283(36):24848–24859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nakada M, Miyamori H, Kita D, Takahashi T, Yamashita J, Sato H, Miura R, Yamaguchi Y, Okada Y (2005) Human glioblastomas overexpress ADAMTS-5 that degrades brevican. Acta Neuropathol 110(3):239–246

    Article  CAS  PubMed  Google Scholar 

  35. Held-Feindt J, Paredes EB, Blömer U, Seidenbecher C, Stark AM, Mehdorn HM, Mentlein R (2006) Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human glioblastomas. Int J Cancer 118(1):55–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Hungarian Brain Research Program - Grant No. KTIA_13_NAP-A-V/3 and II/7, the TÁMOP-4.2.2.A-11/1/KONV-2012-0025 project and A. Klekner by the János Bolyai Scholarship of the Hungarian Academy of Sciences.

Compliance with Ethical Standards

Conflict of Interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Bognár.

Additional information

Gábor Hutóczki and László Bognár contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutóczki, G., Bognár, L., Tóth, J. et al. Effect of Concomitant Radiochemotherapy on Invasion Potential of Glioblastoma. Pathol. Oncol. Res. 22, 155–160 (2016). https://doi.org/10.1007/s12253-015-9989-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-9989-5

Keywords

Navigation