Skip to main content

Advertisement

Log in

Interleukin-10 Induces Both Plasma Cell Proliferation and Angiogenesis in Multiple Myeloma

  • Research
  • Published:
Pathology & Oncology Research

Abstract

In multiple myeloma the angiogenic process is enhanced by various mediators. Among them interleukin-10 (IL-10), secreted mainly by myeloma-associated macrophages seems to participate in myeloma progression with variable manners. The aim of the study was to measure serum levels of IL-10 in various stages of MM patients and to correlate them with various angiogenic cytokines, such as vascular endothelial growth factor and angiopoietin-2 and with known proliferation parameters, such as serum levels of B-cell activating factor and bone marrow infiltration by myeloma plasma cells, in order to explore their clinical significance. We measured serum levels of the above parameters by ELISA in 54 newly diagnosed MM patients. All of them were higher in MM patients and were increasing in parallel with disease progression. Furthermore, IL-10 correlated positively with both angiogenic cytokines and proliferation markers. This correlation of IL-10 with both angiogenic cytokines and markers of disease activity implicates that they all have an important role in MM pathogenesis and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 351:1860–1873

    Article  CAS  PubMed  Google Scholar 

  2. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Benjamin D, Park CD, Sharma V (1994) Human B cell interleukin 10. Leuk Lymphoma 12:205–210

    Article  CAS  PubMed  Google Scholar 

  4. Lauta VM (2003) A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer 97:2440–2452

    Article  CAS  PubMed  Google Scholar 

  5. Nacinović-Duletić A, Stifter S, Dvornik S, Skunca Z, Jonjic N (2008) Correlation of serum IL-6, IL-8 and IL-10 levels with clinicopathological features and prognosis in patients with diffuse large B-cell lymphoma. Int J Lab Hematol 30:230–239

    Article  PubMed  Google Scholar 

  6. Gupta M, Han JJ, Stenson M, Maurer M, Wellik L, Hu G, Ziesmer S, Dogan A (2012) Witzig TE (2012) Elevated serum IL-10 levels in diffuse large B-cell lymphoma: a mechanism of aberrant JAK2 activation. Blood 119:2844–2853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fayad L, Keating MJ, Reuben JM, O’Brien S, Lee BN, Lerner S, Kurzrock R (2001) Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood 97:256–263

    Article  CAS  PubMed  Google Scholar 

  8. Kovacs E (2010) Interleukin-6 leads to interleukin-10 production in several human multiple myeloma cell lines. Does interleukin-10 enhance the proliferation of these cells? Leuk Res 34:912–916

    Article  CAS  PubMed  Google Scholar 

  9. Alexandrakis MG, Roussou P, Pappa CA, Messaritakis I, Xekalou A, Goulidaki N, Boula A, Tsirakis G (2013) Relationship between circulating BAFF serum levels with proliferating markers in patients with multiple myeloma. Biomed Res Int 2013:389579

    Article  PubMed Central  PubMed  Google Scholar 

  10. Vacca A, Ria R, Ribatti D, Semeraro F, Djonov V, Di Raimondo F, Dammacco F (2003) A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica 88:176–185

    CAS  PubMed  Google Scholar 

  11. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J (2000) Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95:2630–2636

    CAS  PubMed  Google Scholar 

  12. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  CAS  PubMed  Google Scholar 

  13. Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG (2005) The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 118:771–780

    Article  CAS  PubMed  Google Scholar 

  14. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356–5362

    Article  CAS  PubMed  Google Scholar 

  15. Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:C947–970

    Article  CAS  PubMed  Google Scholar 

  16. Giuliani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C, Bonomini S, Lunghi P, Hojden M, Genestreti G, Svaldi M, Coser P, Fattori PP, Sammarelli G, Gazzola GC, Bataille R, Almici C, Caramatti C, Mangoni L, Rizzoli V (2003) Proangiogenic properties of human myeloma cells: Production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood 102:638–645

    Article  CAS  PubMed  Google Scholar 

  17. Fragioudaki M, Boula A, Tsirakis G, Psarakis F, Spanoudakis M, Papadakis IS, Pappa CA, Alexandrakis MG (2012) B cell-activating factor: Its clinical significance in multiple myeloma patients. Ann Hematol 91:1413–1418

    Article  CAS  PubMed  Google Scholar 

  18. Ria R, Reale A, De Luisi A, Ferrucci A, Moschetta M, Vacca A (2011) Bone marrow angiogenesis and progression in multiple myeloma. Am J Blood Res 1:76–89

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sica A, Saccani A, Mantovani A (2002) Tumor-associated macrophages: a molecular perspective. Int Immunopharmacol 2:1045–1054

    Article  CAS  PubMed  Google Scholar 

  21. Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70:325–330

    Article  CAS  PubMed  Google Scholar 

  22. Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A, Weiss JM, Wlaschek M, Sunderkötter C, Scharffetter-Kochanek K (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121:985–997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Dace DS, Khan AA, Kelly J, Apte RS (2008) Interleukin-10 promotes pathological angiogenesis by regulating macrophage response to hypoxia during development. PLoS One 3:e3381

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: Implications for tumor progression and anti-cancer therapies. Am J Pathol 167:627–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073

    Article  CAS  PubMed  Google Scholar 

  26. Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Let 123:97–102

    Article  CAS  Google Scholar 

  27. Tanaka Y, Kobayashi H, Suzuki M, Kanayama N, Suzuki M, Terao T (2002) Thymidine phosphorylase expression in tumor-infiltrating macrophages may be correlated with poor prognosis in uterine endometrial cancer. Hum Pathol 33:1105–1113

    Article  CAS  PubMed  Google Scholar 

  28. Matsuda M, Salazar F, Petersson M, Masucci G, Hansson J, Pisa P, Zhang QJ, Masucci MG, Kiessling R (1994) Interleukin 10 pretreatment protects target cells from tumor- and allospecific cytotoxic T cells and downregulates HLA class I expression. J Exp Med 180:2371–2376

    Article  CAS  PubMed  Google Scholar 

  29. Miotto D, Lo Cascio N, Stendardo M, Querzoli P, Pedriali M, De Rosa E, Fabbri LM, Mapp CE, Boschetto P (2010) CD8+ T cells expressing IL-10 are associated with a favourable prognosis in lung cancer. Lung Cancer 69:355–360

    Article  CAS  PubMed  Google Scholar 

  30. Lopez MV, Adris SK, Bravo AI, Chernajovsky Y, Podhajcer OL (2005) IL-12 and IL-10 expression synergize to induce the immune-mediated eradication of established colon and mammary tumors and lung metastasis. J Immunol 175:5885–5894

    Article  CAS  PubMed  Google Scholar 

  31. Mocellin S, Marincola FM, Young HA (2005) Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 78:1043–1051

    Article  CAS  PubMed  Google Scholar 

  32. Berardi S, Ria R, Reale A, De Luisi A, Catacchio I, Moschetta M, Vacca A (2013) Multiple myeloma macrophages: pivotal players in the tumor microenvironment. J Oncol 183602

  33. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073

    CAS  PubMed  Google Scholar 

  34. Pappa CA, Tsirakis G, Samiotakis P, Tsigaridaki M, Alegakis A, Goulidaki N, Alexandrakis MG (2013) Serum levels of angiopoietin-2 are associated with the growth of multiple myeloma. Cancer Invest 31:385–389

    Article  CAS  PubMed  Google Scholar 

  35. Uneda S, Matsuno F, Sonoki T, Tniguchi I, Kawano F, Hata H (2003) Expressions of vascular endothelial growth factor and angiopoietin-2 in myeloma cells. Haematologica 88:113–115

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Tsirakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrakis, M.G., Goulidaki, N., Pappa, C.A. et al. Interleukin-10 Induces Both Plasma Cell Proliferation and Angiogenesis in Multiple Myeloma. Pathol. Oncol. Res. 21, 929–934 (2015). https://doi.org/10.1007/s12253-015-9921-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-9921-z

Keywords

Navigation