Skip to main content

Advertisement

Log in

Open MR-Guided High-Dose-Rate (HDR) Prostate Brachytherapy: Feasibility and Initial Experiences Open MR-Guided High-Dose-Rate (HDR) Prostate Brachytherapy

  • Research
  • Published:
Pathology & Oncology Research

Abstract

The aim of our pilot study was to demonstrate the feasibility and dosimetric quality of MR-guided HDR prostate brachytherapy in a low-field 0.35T open MRI scanner and to present our initial clinical experiences. 16 patiets with intermediate- to high-risk localized prostate cancer were treated with 46–60 Gy of external beam radiotherapy preceded and/or followed by an 8 Gy MR-guided HDR boost. For interventions an MR compatible custom-made system, coaxial needles and plastic catheters were used. Template reconstruction, trajectory planning, image guidance, contouring and treatment planning were exclusively based on MR images. For treatment planning, dose-point- and anatomy-based inverse planning optimization was used. Image quality was found to be good to excellent in almost all cases. The mean catheter placement accuracy modeled by Rayleigh distribution was 2.9 mm with a sigma value of 2.3 mm. The mean and standard deviation (SD) of the dosimetric results for the target volume were the following: V100: 94.2 ± 4.3%, V150: 43.9 ± 6.8%, V200: 18.5 ± 5.9%. The mean D0.1, D1 and D1 values for the intraprostatic urethra were 117.6 ± 12.5%, 98.5 ± 19.9% and 122.3 ± 16.4%, respectively. Regarding the rectal wall the mean D0.1, D1 and D2 values were 77.3 ± 7.2%, 64.8 ± 7.5%, and 53.2 ± 9.1%, respectively. The mean maximum dose for the inner rectal surface was 53.5 ± 9.2%. No RTOG Grade 3 or worse acute toxicities were observed. Our method seems to be a promising approach for performing feasible, accurate and high-quality MR-guided HDR prostate brachytherapy. To determine the long term side effects and outcome higher number of patients, additional follow-up is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BT:

Brachytherapy

BW:

Pixel bandwidth

COIN:

Conformality index

CTV:

Clinical target volume

Du1:

Dose to volume of the most exposed 1% of the urethra

D90:

Minimum dose with which 90% of the PTV was irradiated

DHI:

Dose Homogeneity Index

Drmax :

Maximal point dose of the rectal inner surface

DNR:

Dose Nonuniformity Ratio

Dr0.1 Dr1, Dr2 :

Dose to volume of the most exposed 0.1, 1 and 2 cm3 of the rectal wall

Du0.1,Du1 :

Dose to volume of the most exposed 0.1 and 1 cm3of the urethra

EBRT:

External-beam radiotherapy

FA:

Flip angle

FOV:

Field of view

FSPGR:

Fast spoiled gradient-echo

Gy:

Gray

HDR:

High-dose-rate

HRPC:

High-risk prostate cancer

IPO:

Inverse planning optimization

IRPC:

Intermediate-risk prostate cancer

MRI:

Magnetic resonance imaging

NEX:

Number of excitations

OARs:

Organs at risk

Prs:

Procedures

Pts:

Patients

SV:

Seminal vesicles

T:

Tesla

T1W:

T1-weighted

T2W:

T2-weighted

TE:

Echo-time

TR:

Repetition time

TRUS:

Transrectal ultrasound

V100,V150,V200:

The volume in the PTV receiving 100% 150% or 200% of the prescribed dose or greater

References

  1. Kásler M, Sz O (2008) European and Hungarian national tasks in oncology. Magy Onkol 52:21–33

    Article  PubMed  Google Scholar 

  2. Jereczek-Fossa BA, Orecchia R (2007) Evidence-based radiation oncology: definitive, adjuvant and salvage radiotherapy for non-metastatic prostate cancer. Radiother Oncol 84:197–215

    Article  PubMed  Google Scholar 

  3. Morton G (2005) The emerging role of high-dose-rate brachytherapy for prostate cancer. Clin Oncol 17:219–227

    Article  CAS  Google Scholar 

  4. Hoskin PJ, Motohashi K, Bownes P et al (2007) High dose rate brachytherapy in combination with external beam radiotherapy in the radical treatment of prostate cancer: initial results of a randomised phase three trial. Radiother Oncol 84:114–120

    Article  PubMed  Google Scholar 

  5. Guix B, Bartina JM, Henriquez I et al (2007) Dose escalation by combined treatment 3-D conformal radiotherapy plus HDR brachytherapy as treatment for intermediate-or-high-risk cancer: early toxicity and biochemical outcome of a prospective randomized trial. [Abstract] Radiother Oncol 83(suppl1):82a

    Google Scholar 

  6. Presti JC Jr (2000) Prostate cancer: assessment of risk using digital rectal examination, tumor grade, prostate-specific antigen, and systematic biopsy. Radiol Clin North Am 38:49–58

    Article  PubMed  Google Scholar 

  7. Aigner F, Mitterberger M, Rehder P et al (2010) Status of transrectal ultrasound imaging of the prostate. J Endourol 24:685–691

    Article  PubMed  Google Scholar 

  8. Futterer J (2007) MR imaging in the local staging of prostate cancer. Eur J Radiol 63:328–334

    Article  PubMed  Google Scholar 

  9. Morgan VA, Kyriazi S, Ashley SE et al (2007) Evaluation of the potential of diffusion-weighted imaging in prostate cancer detection. Acta Radiol 48:695–703

    Article  PubMed  CAS  Google Scholar 

  10. Kim Y, Hsu IC, Lessard E et al (2008) Class solution in inverse planned HDR prostate brachytherapy for dose escalation of DIL defined by combined MRI/MRSI. Radiother Oncol 88:148–155

    Article  PubMed  Google Scholar 

  11. Van Lin EN, Futterer JJ, Heymink SW et al (2006) IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys 65:291–303

    Article  PubMed  Google Scholar 

  12. Tempany C, Straus S, Hata N et al (2008) MR-guided prostate interventions. J Magn Reson Imaging 27:356–367

    Article  PubMed  Google Scholar 

  13. Cormack RA, Kooy H, Tempany CM et al (2000) A clinical method for real-time dosimetric guidance of transperineal 125I prostate implants using interventional magnetic resonance imaging. Int J Radiat Oncol Biol Phys 46:207–214

    Article  PubMed  CAS  Google Scholar 

  14. Blumenfeld P, Hata N, DiMaio S et al (2007) Transperineal prostate biopsy under magnetic resonance image guidance: a needle placement accuracy study. J Magn Reson Imaging 26:688–694

    Article  PubMed  Google Scholar 

  15. Ares C, Popowski Y, Pampallona S et al (2009) Hypofractionated boost with high-dose-rate brachytherapy and open magnetic resonance imaging-guided implants for locally aggressive prostate cancer: a sequential dose-escalation pilot study. Int J Radiat Oncol Biol Phys 75:656–663

    Article  PubMed  Google Scholar 

  16. Menard C, Susil RC, Choyke P et al (2004) MRI-guided HDR prostate brachytherapy in standard 1.5T scanner. Int J Radiat Oncol Biol Phys 59:1414–1423

    Article  PubMed  Google Scholar 

  17. Susil RC, Camphausen K, Choyke P et al (2004) System for prostate brachytherapy and biopsy in a standard 1.5T MRI scanner. Magn Reson Med 52:683–687

    Article  PubMed  Google Scholar 

  18. Fischer GS, DiMaio SP, Iordachita II et al (2007) Robotic assistant for transperineal prostate interventions in 3T closed MRI. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 10:425–433

    Google Scholar 

  19. Muntener M, Patriciu A, Petrisor D et al (2008) Transperineal prostate intervention: robot for fully automated MR imaging–system description and proof of principle in a canine model. Radiology 247:543–549

    Article  PubMed  Google Scholar 

  20. Hadjiev J, Antal G, Antalffy Z et al (2004) A novel technique with a flexible applicator for MRI-based brachytherapy of cervical cancer. Eur J Gynaecol Oncol 25:347–350

    PubMed  CAS  Google Scholar 

  21. Lakosi F, Antal G, Vandulek C et al (2009) Technical feasibility of transperineal MR-guided prostate interventions in a low-field open MRI unit: canine study. Pathol Oncol Res 15:315–322

    Article  PubMed  Google Scholar 

  22. National Comprehensive Cancer Network: National practice guidelines in oncology-prostate cancer, Version 2, 2008 (monograph online). http://www.nccn.org/professionals/physician-gls/PDF/prostate.pdf

  23. Kovács G, Pötter R, Loch T, Hammer J et al (2005) GEC/ESTRO-EAU recommendations on temporary brachytherapy using stepping sources for localised prostate cancer. Radiother Oncol 74:137–148

    Article  PubMed  Google Scholar 

  24. Baltas D, Kolotas C, Geramani K et al (1998) A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy. Int J Radiat Oncol Biol Phys 40:515–524

    Article  PubMed  CAS  Google Scholar 

  25. Major T, Polgar C, Somogyi A et al (2000) Evaluation of the dose uniformity for double-plane high dose rate interstitial breast implants with the use of dose reference points and dose non-uniformity ratio. Radiother Oncol 54:213–220

    Article  PubMed  CAS  Google Scholar 

  26. Wu A, Ulin K, Sternick ES (1988) A dose homogeneity index for evaluating 192Ir interstitial breast implants. Med Phys 15:104–107

    Article  PubMed  CAS  Google Scholar 

  27. Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346

    Article  PubMed  CAS  Google Scholar 

  28. Zangos S, Eichler K, Engelmann K et al (2005) MR-guided transgluteal biopsies with an open low-field system in patients with clinically suspected prostate cancer: technique and preliminary results. Eur Radiol 15:174–182

    Article  PubMed  Google Scholar 

  29. Potter R, Kirisits C, Fidarova EF et al (2008) Present status and future of high-precision image guided adaptive brachytherapy for cervix carcinoma. Acta Oncol 47:1325–1336

    Article  PubMed  Google Scholar 

  30. Citrin D, Ning H, Guion P et al (2005) Inverse treatment planning based on MRI for HDR prostate brachytherapy. Int J Radiat Oncol Biol Phys 61:1267–1275

    Article  PubMed  Google Scholar 

  31. Morton GC, Sankreacha R, Halina P et al (2008) A comparison of anatomy-based inverse planning with simulated annealing and graphical optimization for high-dose-rate prostate brachytherapy. Brachytherapy 7:12–16

    Article  PubMed  Google Scholar 

  32. Jacob D, Raben A, Sarkar A et al (2008) Anatomy-based inverse planning simulated annealing optimization in high-dose-rate prostate brachytherapy: significant dosimetric advantage over other optimization techniques. Int J Radiat Oncol Biol Phys 72:820–827

    Article  PubMed  Google Scholar 

  33. Akimoto T, Katoh H, Kitamoto Y et al (2006) Anatomy-based inverse optimization in high-dose-rate brachytherapy combined with hypofractionated external beam radiotherapy for localized prostate cancer: comparison of incidence of acute genitourinary toxicity between anatomy-based inverse optimization and geometric optimization. Int J Radiat Oncol Biol Phys 64:1360–1366

    Article  PubMed  Google Scholar 

  34. Fröhlich G, Agoston P, Lövey J et al (2007) Dosimetric evaluation of interstitial high-dose-rate implants for localised prostate cancer. Magy Onkol 51:31–38

    PubMed  Google Scholar 

  35. Antal G, Lakosi F, Vandulek CS et al (2009) MR modelling of the rectal dosimeter probe during MR-guided high-dose-rate (HDR) prostate brachytherapy: feasibility and initial experiences. [Abstract] Radiother Oncol 91(1):38

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Andras Bucsek for the development of the custom made system, Georgina Fröhlich for her help in the statistical analysis and the Urologic and Anesthesiologic team at the Kaposi Mor Teaching Hospital for their input and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpad Kovacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakosi, F., Antal, G., Vandulek, C. et al. Open MR-Guided High-Dose-Rate (HDR) Prostate Brachytherapy: Feasibility and Initial Experiences Open MR-Guided High-Dose-Rate (HDR) Prostate Brachytherapy. Pathol. Oncol. Res. 17, 315–324 (2011). https://doi.org/10.1007/s12253-010-9319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-010-9319-x

Keywords

Navigation