Skip to main content

Advertisement

Log in

Enhancement of 5-Fluorouracil Efficacy on High COX-2 Expressing HCA-7 Cells by Low Dose Indomethacin and NS-398 but not on Low COX-2 Expressing HT-29 Cells

  • Original Paper
  • Published:
Pathology & Oncology Research

Abstract

The antiproliferative effect of 5-fluorouracil (5-FU) in the presence of low dose non-steroidal anti-inflammatory drugs (NSAIDs) on high cyclooxygenase-2 (COX-2)-expressing HCA-7 and low COX-2-expressing HT-29 colon carcinoma cell lines was investigated. Pharmacogenetic parameters were studied to characterize the 5-FU sensitivity of the two cell lines. Thymidylate synthase (TS) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms were determined by PCR analysis. Cell proliferation was measured by SRB assay, cell cycle distribution and apoptosis by FACS analysis. Cyclooxygenase expression was detected by Western blot and also by fluorescence microscopy. Prostaglandin E2 (PGE2) levels were investigated with ELISA kit. The HT-29 cell line was found to be homozygous for TS 2R and 1494ins6 and T homozygous for MTHFR 677 polymorphisms predicting high 5-FU sensitivity (IC50: 10 μM). TS 3R homozygosity, TS 1496del6 and MTHFR 677CT heterozygosity may explain the modest 5-FU sensitivity (IC50: 1.1 mM) of the HCA-7 cell line. Indomethacin and NS-398 (10 µM and 1.77 µM, respectively) reduced the PGE2 level in HCA-7 cells (>90%). Low concentrations of NSAIDs without antiproliferative potency increased the S-phase arrest and enhanced the cytotoxic action of 5-FU only in HCA-7 cells after 48-hours treatment. The presented data suggested that the enhancement of 5-FU cytotoxicity by indomethacin or NS-398 applied in low dose is related to the potency of NSAIDs to modulate the cell-cycle distribution and the apoptosis; however, it seems that this effect might be dependent on cell phenotype, namely on the COX-2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5-FU:

5-fluorouracil

CRC:

colorectal cancer

COX-2:

cyclooxygenase-2

dUMP:

2’-deoxyuridine 5’-monophosphate

ELISA:

enzyme-linked immunosorbent assay

FACS:

fluorescence activated cell sorter

FBS:

fetal bovine serum

IC50 :

50% inhibitory concentration

MTHFR:

5,10-methylenetetrahydrofolate

NSAIDs:

non-steroidal anti-inflammatory drugs

PBS:

phosphate-buffered saline

PGE2 :

prostaglandin E2

SRB:

sulphorhodamine B

TBS:

Tris-buffered saline

TS:

thymidylate synthase

UTP:

uridine 5’-triphosphate

References

  1. Prescott SM, Fitzpatrick FA (2000) Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta 1470:69–78

    Google Scholar 

  2. Kawai N, Tsujii M, Tsuji S (2002) Cyclooxygenases and colon cancer. Prostaglandins Other Lipid Mediat 68–69:187–196

    Article  PubMed  Google Scholar 

  3. Zha S, Yegnasubramanian V, Nelson WG et al (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215:1–20

    Article  CAS  PubMed  Google Scholar 

  4. Rishikesh MK, Sadhana SS (2003) Prostaglandins and cyclooxygenase: Their probable role in cancer. Indian J Pharmacol 35:3–12

    CAS  Google Scholar 

  5. Weckbecker G (1991) Biochemical pharmacology and analysis of fluoropyrimidines alone and in combination with modulators. Pharmac Ther 50:367–424

    Article  CAS  Google Scholar 

  6. Petak I, Tillman DM, Houghton JA (2000) p53 dependence of Fas induction and acute apoptosis in response to 5-fluorouracil-leucovorin in human colon carcinoma cell lines. Clin Cancer Res 6:4432–4441

    CAS  PubMed  Google Scholar 

  7. Adeyemo D, Imtiaz F, Toffa S et al (2001) Antioxidants enhance the susceptibility of colon carcinoma cells to 5-fluorouracil by augmenting the induction of the bax protein. Cancer Lett 164:77–84

    Article  CAS  PubMed  Google Scholar 

  8. Ponthan F, Wickström M, Gleissman H et al (2007) Celecoxib prevents neuroblastoma tumor development and potentiates the effect of chemotherapeutic drugs in vitro and in vivo. Clin Cancer Res 13:1036–1044

    Article  CAS  PubMed  Google Scholar 

  9. Mazhar D, Ang R, Waxman J (2006) COX inhibitors and breast cancer. Br J Cancer 94:346–350

    Article  CAS  PubMed  Google Scholar 

  10. Mercadante S (2001) The use of anti-inflammatory drugs in cancer pain. Cancer Treat Rev 27:51–61

    Article  CAS  PubMed  Google Scholar 

  11. Minter HA, Eveson JW, Huntley S et al (2003) The cyclooxygenase 2-selective inhibitor NS398 inhibits proliferation of oral carcinoma cell lines by mechanisms dependent and independent of reduced prostaglandin E2 synthesis. Clin Cancer Res 9:1885–1897

    CAS  PubMed  Google Scholar 

  12. Ou YC, Yang CR, Cheng CL et al (2007) Indomethacin induces apoptosis in 786-O renal cell carcinoma cells by activating mitogen-activated protein kinases and AKT. Eur J Pharmacol 563:49–60

    Article  CAS  PubMed  Google Scholar 

  13. Zhang M, Abe Y, Matsushima T et al (2005) Selective cyclooxygenase 2 inhibitor NS-398 induces apoptosis in myeloma cells via a Bcl-2 independent pathway. Leuk Lymphoma 46:425–433

    Article  CAS  PubMed  Google Scholar 

  14. Aggarwal S, Taneja N, Lin L et al (2000) Indomethacin-induced apoptosis in esophageal adenocarcinoma cells involves upregulation of Bax and translocation of mitochondrial cytochrome C independent of COX-2 expression. Neoplasia 2:346–356

    Article  CAS  PubMed  Google Scholar 

  15. Shao J, Sheng H, Inoue H et al (2000) Regulation of constitutive cyclooxygenase-2 expression in colon carcinoma cells. J Biol Chem 275:33951–33956

    Article  CAS  PubMed  Google Scholar 

  16. Hitre E, Budai B, Adleff V et al (2005) Influence of thymidylate synthase gene polymorphisms on the survival of colorectal cancer patients receiving adjuvant 5-fluorouracil. Pharmacogenet Genomics 15:723–730

    Article  CAS  PubMed  Google Scholar 

  17. Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  18. Katona C, Tímár F, Jeney A et al (1999) Modulation of 5-fluorouracil by 5-ethyl-2’-deoxyuridine on cell lines expressing different dihydropyrimidine dehydrogenase activities. Anticancer Drugs 10:561–567

    Article  CAS  PubMed  Google Scholar 

  19. Stubbs VE, Schratl P, Hartnell A et al (2002) Indomethacin causes prostaglandin D(2)-like and eotaxin-like selective responses in eosinophils and basophils. J Biol Chem 277:26012–26020

    Article  CAS  PubMed  Google Scholar 

  20. Barnett J, Chow J, Ives D (1994) Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim Biophys Acta 1209:130–139

    CAS  PubMed  Google Scholar 

  21. Sánchez-Alcázar JA, Bradbury DA, Pang L, Knox AJ (2003) Cyclooxygenase (COX) inhibitors induce apoptosis in non-small cell lung cancer through cyclooxygenase independent pathways. Lung Cancer 40:33–44

    Article  PubMed  Google Scholar 

  22. Han JH, Roh MS, Park CH et al (2004) Selective COX-2 inhibitor, NS-398, inhibits the replicative senescence of cultured dermal fibroblasts. Mech Ageing Dev 125:359–366

    Article  CAS  PubMed  Google Scholar 

  23. Kralovánszky J, Katona C, Jeney A et al (1999) 5-ethyl-2’-deoxyuridine, a modulator of both antitumour action and pharmacokinetics of 5-fluorouracil. J Cancer Res Clin Oncol 125:675–684

    Article  PubMed  Google Scholar 

  24. Beck A, Etienne MC, Chéradame S et al (1994) A role for dihydropyrimidine dehydrogenase and thymidylate synthase in tumor sensitivity to fluorouracil. Eur J Cancer 30A:1517–1522

    Article  CAS  PubMed  Google Scholar 

  25. Etienne MC, Ilc K, Formento JL et al (2004) Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms: relationships with 5-fluorouracil sensitivity. Br J Cancer 90:526–534

    Article  CAS  PubMed  Google Scholar 

  26. Duffy CP, Elliott CJ, O’Connor RA et al (1998) Enhancement of chemotherapeutic drug toxicity to human tumour cells in vitro by a subset of non-steroidal anti-inflammatory drugs (NSAIDs). Eur J Cancer 34:1250–1259

    Article  CAS  PubMed  Google Scholar 

  27. Bennett A, Gaffen JD, Melhuish PB, Stamford IF (1987) Studies on the mechanism by which indomethacin increases the anticancer effect of methotrexate. Br J Pharmacol 91:229–235

    CAS  PubMed  Google Scholar 

  28. Ogino M, Hanazono M (1999) Indomethacin preferentially augments 5-fluorouracil cytotoxicity in Colon 26 tumors by increasing the intracellular inflow of 5-fluorouracil. Int J Clin Oncol 4:22–25

    Article  Google Scholar 

  29. Ogino M, Minoura S (2001) Indomethacin increases the cytotoxicity of cis-platinum and 5-fluorouracil in the human uterine cervical cancer cell lines SKG-2 and HKUS by increasing the intracellular uptake of the agents. Int J Clin Oncol 6:84–89

    Article  CAS  PubMed  Google Scholar 

  30. Totzke G, Schulze-Osthoff K, Jänicke U (2003) Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced appoptosis independently of COX-2 inhibition. Oncogene 22:8021–8030

    Article  PubMed  Google Scholar 

  31. O’Callaghan G, Kelly J, Shanahan F, Houston A (2008) Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells. Br J Cancer 99(3):502–512

    Article  PubMed  Google Scholar 

  32. Yasumaru M, Tsuji S, Tsujii M et al (2003) Inhibition of angiotensin II activity enhanced the antitumor effect of cyclooxygenase-2 inhibitors via insulin-like growth factor I receptor pathway. Cancer Res 63(20):6726–6734

    CAS  PubMed  Google Scholar 

  33. Touhey S, O’Connor R, Plunkett S et al (2002) Structure-activity relationship of indomethacin analogues for MRP-1, COX-1 and COX-2 inhibition identification of novel chemotherapeutic drug resistance modulators. Eur J Cancer 38:1661–1670

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi S, Okada S, Yoshida H, Fujimura S (1997) Indomethacin enhances the cytotoxicity of VCR and ADR in human pulmonary adenocarcinoma cells. Tohoku J Exp Med 181:361–370

    Article  CAS  PubMed  Google Scholar 

  35. Eichele K, Ramer R, Hinz B (2008) Decisive role of cyclooxygenase-2 and lipocalin-type prostaglandin D synthase in chemotherapeutics-induced apoptosis of human cervical carcinoma cells. Oncogene 27:3032–3044

    Article  CAS  PubMed  Google Scholar 

  36. Mizutani Y, Kamoi K, Ukimura O et al (2002) Synergistic cytotoxicity and apoptosis of JTE-522, a selective cyclooxygenase-2 inhibitor, and 5-fluorouracil against bladder cancer. J Urol 168:2650–2654

    Article  CAS  PubMed  Google Scholar 

  37. Smakman N, Schaap N, Snijckers CMJT et al (2005) NS-398, a selective cyclooxygenase-2 inhibitor, reduces experimental bladder carcinoma outgrowth by inhibiting tumor cell proliferation. Urology 66:434–440

    Article  PubMed  Google Scholar 

  38. Rodrigues NR, Rowan A, Smith ME et al (1990) p53 mutations in colorectal cancer. Proc Natl Acad Sci USA 87:7555–7559

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Bodmer WF (2006) Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA 103:976–981

    Article  CAS  PubMed  Google Scholar 

  40. Yip-Schneider MT, Sweeney CJ, Jung SH et al (2001) Cell cycle effects of nonsteroidal anti-inflammatory drugs and enhanced growth inhibition in combination with gemcitabine in pancreatic carcinoma cells. J Pharmacol Exp Ther 298:976–985

    CAS  PubMed  Google Scholar 

  41. Meade EA, Smith WL, DeWitt DL (1993) Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem 268:6610–6614

    CAS  PubMed  Google Scholar 

  42. Lee SH, Lee MY, Han HJ (2008) Short-period hypoxia increases mouse embryonic stem cell proliferation through cooperation of arachidonic acid and PI3K/Akt signalling pathways. Cell Prolif 41:230–247

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Ye Y, Bai Z, Wang S (2008) The COX-2 selective inhibitor-independent COX-2 effect on colon carcinoma cells is associated with the Delta1/Notch1 pathway. Dig Dis Sci 53:2195–2203

    Article  CAS  PubMed  Google Scholar 

  44. Oguri T, Bessho Y, Achiwa H et al (2007) MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Cancer Ther 6:122–127

    Article  CAS  PubMed  Google Scholar 

  45. Chen ZS, Guo Y, Belinsky MG et al (2005) Transport of bile acids, sulfated steroids, estradiol 17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol Pharmacol 67:545–557

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. E. Hitre for critical reading of this manuscript and Cs. Polényi Makácsné, A. Nagy, J. Kútvölgyi, A. Éber Mousáné for their technical assistance. This study was supported by the Jedlik Ányos Grant (NKFP1-00024/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Kralovánszky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Réti, A., Barna, G., Pap, É. et al. Enhancement of 5-Fluorouracil Efficacy on High COX-2 Expressing HCA-7 Cells by Low Dose Indomethacin and NS-398 but not on Low COX-2 Expressing HT-29 Cells. Pathol. Oncol. Res. 15, 335–344 (2009). https://doi.org/10.1007/s12253-008-9126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-008-9126-9

Keywords

Navigation