Skip to main content

Advertisement

Log in

Nanocrystals: Characterization Overview, Applications in Drug Delivery, and Their Toxicity Concerns

  • Review Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Nanocrystals (NCs) are the class of solid dosage forms which utilizes the concept of nanoscience together with crystal nature of drug to achieve advantages in terms of solubility, dissolution, and physicochemical properties. Comparing with other solid dosage forms, NC often comes with so many challenges in terms of physical stability as well as chemical stability during the manufacturing process and storage. Therefore, physicochemical properties of nanocrystals, toxic effect on the human body, and application in drug delivery through the various routes of administration are critical step formulation of NCs. There are various techniques involved to ensure solid state uniformity in the NCs and its impact on therapeutic performance. This review article emphasizes on various solid-state characterization techniques that are used to evaluate NCs, their toxicity, and pharmaceutical application. Further, NC-based marketed formulation is also discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antiochia R, Bollella P, Favero G, Mazzei F. Nanotechnology-based surface plasmon resonance affinity biosensors for in vitro diagnostics. Int J Anal Chem. 2016;2016:1–15.

    Article  CAS  Google Scholar 

  2. Aziz T, Fan H, Zhang X, Haq F, Ullah A, Ullah R, et al. Advance study of cellulose nanocrystals properties and applications. J Polym Environ. 2020;28:1117–28.

    Article  CAS  Google Scholar 

  3. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–87.

    Article  CAS  PubMed  Google Scholar 

  4. Bott S, Hart W. Particle size analysis utilizing polarization intensity differential scattering. U.S. Patent 4 (953),978. 1990.

  5. Castañeda L. A facile method for formulation of atenolol nanocrystal drug with enhanced bioavailability, nanocrystalline mat. IntechOpen; 2019. p. 1–14.

  6. Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:e1416.

    Article  Google Scholar 

  7. Chai Z, Ran D, Lu L, Zhan C, Ruan H, Hu X, et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano. 2019;13(5):5591–601.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z, Wu W, Lu Y. What is the future for nanocrystal-based drug-delivery systems? Ther Deliv. 2020;11(4):1–5.

    Article  CAS  Google Scholar 

  9. Chogale MM, Ghodake VN, Patravale VB. Performance parameters and characterizations of nanocrystals: a brief review. Pharmaceutics. 2016;8(26):1–18.

    Google Scholar 

  10. Danley R. New heat flux DSC measurement technique. Thermochim Acta. 2002;395:201–8.

    Article  Google Scholar 

  11. De Waard H, De Beer T, Hinrichs W, Vervaet C, Remon J, Frijlink H. Controlled crystallization of the lipophilic drug fenofibrate during freeze-drying: elucidation of the mechanism by in-line Raman spectroscopy. AAPS J. 2010;12:569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng J, Huang L, Liu F. Understanding the structure and stability of paclitaxel nanocrystals. Int J Pharm. 2010;390(2):242–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dressman J, Amidon G, Reppas C. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15:11–22.

    Article  CAS  PubMed  Google Scholar 

  14. Drews T, Tsapatsis M. Model of the evolution of nanoparticles to crystals via an aggregative growth mechanism. Microporous Mesoporous Mater. 2007;101:97–107.

    Article  CAS  Google Scholar 

  15. DuBohm B, Muller R. Lab-scale production unit design for nanosuspensions of sparingly soluble cytotoxic drugs. Pharm Sci Tech. 1999;2:336–9.

    Article  Google Scholar 

  16. Duchene D, Ponchel G. Bioadhesion of solid oral dosage forms, why and how? Eur J Pharm Biopharm. 1997;44:15–23.

    Article  CAS  Google Scholar 

  17. El-Batal AI, Elmenshawi SF, Ali AMA, Eldbaiky EG. Preparation and characterization of silymarin nanocrystals and phytosomes with investigation of their stability using gamma irradiation. Indian J of Pharm Edu and Res. 2018;52(4):1–10.

  18. Ganta S, Paxton JW, Baguley BC, Garg S. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int J Pharm. 2009;367(1–2):179–86.

    Article  CAS  PubMed  Google Scholar 

  19. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res. 2008;10:845–62.

    Article  CAS  Google Scholar 

  20. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res. 2013;30(2):307–24.

    Article  CAS  PubMed  Google Scholar 

  21. Gao Y, Wang J, Wang Y, Yin Q, Glennon B, Zhong J, et al. Crystallization methods for preparation of nanocrystals for drug delivery system. Curr Pharm Des. 2015;21:3131–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gerber DE. Targeted therapies: a new generation of cancer treatments. Am Fam Physician. 2008;77:311–9.

    PubMed  Google Scholar 

  23. Gigliobianco MR, Casadidio C, Censi R, Piera Di Martino PD. Nanocrystals of poorly soluble drugs: drug bioavailability and physicochemical stability. Pharmaceutics. 2018;10(3):1–29.

    Article  CAS  Google Scholar 

  24. Gulsun T, Gursoy RN, Oner L. Nanocrystal technology for oral delivery of poorly water-soluble drugs. FABAD J Pharm Sci. 2009;34:55–65.

    CAS  Google Scholar 

  25. Hanafy A, Spahn H, Vergnault G, Grenier P, Grozdanis MT, Lenhardt T. Pharmacokinetic evaluation of oral fenofibrate nanosuspension and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev. 2007;59:419–26.

    Article  CAS  PubMed  Google Scholar 

  26. Hancock B, Carlson G, Ladipo D. Comparison of the mechanical properties of the crystalline and amorphous forms of a drug substance. Int J Pharm. 2002;241:73–85.

    Article  CAS  PubMed  Google Scholar 

  27. Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm. 2005;299:167–77.

    Article  CAS  PubMed  Google Scholar 

  28. Heimbach T, Fleisher D, Kaddoumi A. Overcoming poor aqueous solubility of drugs for oral delivery. Biotechnol: Pharm Asp. 2007;5:157–215.

    Google Scholar 

  29. Ige PP, Baria RK, Gattani SG. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf B: Biointerfaces. 2013;108:366–73.

    Article  CAS  PubMed  Google Scholar 

  30. Im SH, Jung HT, Ho MJ, Lee JE, Kim HT, Kim DY, et al. 2020. Montelukast nanocrystals for transdermal delivery with improved chemical stability. Pharmaceutics. 2020;12(1):1–18.

    Google Scholar 

  31. Jarvis M, Krishnan V, Mitragotri S. Nanocrystals: a perspective on translational research and clinical studies. Bioeng Transl Med. 2019;4(1):5–16.

    Article  PubMed  Google Scholar 

  32. Jinno J, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release. 2006;111(1–2):56–64.

    Article  CAS  PubMed  Google Scholar 

  33. Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10:13–23.

    Article  Google Scholar 

  34. Kassem MA, Abdel Rahman AA, Ghorab MM, Ahmed MB, Khalil RM. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007;340:126–33.

    Article  CAS  PubMed  Google Scholar 

  35. Keck C, Muller R. Characterisation of nanosuspensions by laser diffractometry. In: Proceedings of the Annual Meeting of the American Association of Pharmaceutical Scientists (AAPS), Nashville, TN, USA; 2005.

  36. Kipp J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284:109–22.

    Article  CAS  PubMed  Google Scholar 

  37. Koneti V, Singh SK, Gulati M. A comparative study of top-down and bottom-up approaches for the preparation of nanosuspensions of glipizide. Powder Technol. 2014;256:436–49.

    Article  CAS  Google Scholar 

  38. Kumar AN, Deecaraman M, Rani C. Nanosuspension technology and its applications in drug delivery. Asian J Pharm. 2009;3:168–73.

    Article  Google Scholar 

  39. Kumar M, Shanthi N, Mahato AK, Soni S, Rajnikanth PS. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon. 2019;5:1–10.

    CAS  Google Scholar 

  40. Kumar M, Jha A, Madhu DR, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin Drug Deliv. 2020:1–14. https://doi.org/10.1080/17425247.2020.1798401.

  41. Lademann J, Richter H, Teichmann A. Nanoparticles—an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66:159–64.

    Article  CAS  PubMed  Google Scholar 

  42. Lang J, Roehrs R, Jani R. Ophtalmic preparations. In: Remington: the science and practice of pharmacy. Philadelphia: LippincottWilliams & Wilkins; 2006.

    Google Scholar 

  43. Lee J, Lee S, Choi J. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur J Pharm Sci. 2005;24:441–9.

    Article  CAS  PubMed  Google Scholar 

  44. Li YS, Church JS. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J Food Drug Anal. 2014;22:29–48.

    Article  PubMed  CAS  Google Scholar 

  45. Li Y, Dong L, Jia A, Chang X, Xue H. Preparation and characterization of solid lipid nanoparticles loaded traditional Chinese medicine. Int J Biol Macromol. 2006;38:296–9.

    Article  CAS  PubMed  Google Scholar 

  46. Li W, Yang Y, Tian Y, Xu X, Chen Y, Mu L, et al. Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension. Int J Pharm. 2011;408(1–2):157–62.

    Article  CAS  PubMed  Google Scholar 

  47. Liandong H, Dongqian K, Qiaofeng H, Na G, Saixi P. Evaluation of high-performance curcumin nanocrystals for pulmonary drug delivery both in vitro and in vivo. Nanoscale Res Lett. 2015;10,381–90.

  48. Liu T, Yu X, Yin H, Möschwitzer JP. Advanced modification of drug nanocrystals by using novel fabrication and downstream approaches for tailor-made drug delivery. Drug Del. 2019;26(1):1092–103.

    Article  CAS  Google Scholar 

  49. Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125(1):91–7.

    Article  CAS  Google Scholar 

  50. Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B. 2016;6(2):106–13.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mantzaris N. Liquid-phase synthesis of nanoparticles: particle size distribution dynamics and control. Chem Eng Sci. 2005;60:4749–70.

    Article  CAS  Google Scholar 

  52. Manzanares D, Cen V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics. 2020;12(371):1–22.

    Google Scholar 

  53. Merisko EL, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  CAS  Google Scholar 

  54. Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63:427–40.

    Article  CAS  PubMed  Google Scholar 

  55. Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm. 2019;562:187–202.

    Article  CAS  PubMed  Google Scholar 

  56. Moribe K, Wanawongthai C, Shudo J, Higashi K, Yamamoto K. Morphology and surface states of colloidal probucol nanoparticles evaluated by atomic force microscopy. Chem Pharm Bull. 2008;56:878–80.

    Article  CAS  Google Scholar 

  57. Moschwitzer J, Achleitner G, Pomper H, Müller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm. 2004;58(3):615–9.

    Article  PubMed  CAS  Google Scholar 

  58. Mosharraf M, Nystrom C. The effect of particle size and shape on the surface specific dissolution rate of micronized practically insoluble drugs. Int J Pharm. 1995;122:35–47.

    Article  CAS  Google Scholar 

  59. Muheem A, Shakeel F, Warsi MH, Jain GK, Ahmad FJ. A combinatorial statistical design approach to optimize the nanostructured cubosomal carrier system for oral delivery of ubidecarenone for management of doxorubicin-induced cardiotoxicity: in vitro–in vivo investigations. J Pharm Sci. 2017;106(10):3050–65.

    Article  CAS  PubMed  Google Scholar 

  60. Muller R, Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int J Pharm. 2002a;237:151–61.

    Article  CAS  PubMed  Google Scholar 

  61. Muller RH, Jacobs C. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002b;19:189–94.

    Article  PubMed  Google Scholar 

  62. Muller RH, Gohla S, Keck CM. State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  63. Nanotechnology for drug delivery: global market for nanocrystals. Available at: https://www.researchandmarkets.com/research/ths3db/nanotechnology_for. Accessed May 17, 2020.

  64. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005;2:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Oh N, Ji-Ho Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014;9(1):51–63.

    PubMed  PubMed Central  Google Scholar 

  66. Patzelt A, Richter H, Knorr F. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150:45–8.

    Article  CAS  PubMed  Google Scholar 

  67. Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release. 2014;183:51–66.

    Article  CAS  PubMed  Google Scholar 

  68. Peters K, Leitzke S, Diederichs JE, Borner K, Hahn H, Müller RH, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine mycobacterium avium infection. J Antimicrob Chemother. 2000;45(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  69. Pignatello R, Bucolo C, Ferrara P, Maltese A, Pvleo A, Puglisi G. Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;6:53–61.

    Article  Google Scholar 

  70. Rabinow B. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3:785–96.

    Article  CAS  PubMed  Google Scholar 

  71. Raghava Srivalli KM, Mishra B. Drug nanocrystals: a way toward scale-up. Saudi Pharm J. 2014;24(4):386–404.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Raja SN, Bekenstein Y, Koc MA, Fischer S, Zhang D, Lin L, et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl Mater Interfaces. 2016;8:35523–33.

    Article  CAS  PubMed  Google Scholar 

  73. Reid MS, Villalobos M, Cranston ED. Cellulose nanocrystal interactions probed by thin film swelling to predict dispersibility. Nanoscale. 2016;8:12247–57.

    Article  CAS  PubMed  Google Scholar 

  74. Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013;1:1–19.

    Article  CAS  Google Scholar 

  75. Sawant KK, Patel MH, Patel K. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro-in vivo evaluations. Drug Dev Ind Pharm. 2016;42(5):758–68.

    Article  CAS  PubMed  Google Scholar 

  76. Schnitte M, Staiger A, Casper LA, Mecking S. Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nat Commun. 2019;10(2592):1–6.

    CAS  Google Scholar 

  77. Shafaie S, Hutter V, Cook MT, Brown MB, Chau DY. In vitro cell models for ophthalmic drug development applications. Biores Open Access. 2016;5(1):94–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399:129–39.

    Article  CAS  PubMed  Google Scholar 

  79. Song K, Zhu X, Zhu W, Xiaoyan Li X. Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass. Bioresour Bioprocess. 2019;6(45):1–8.

    Google Scholar 

  80. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8:473–80.

    Article  CAS  PubMed  Google Scholar 

  81. Sun W, Tian W, Zhang Y, He J, Mao S, Fang L. Effect of novel stabilizers—cationic polymers on the particle size and physical stability of poorly soluble drug nanocrystals. Nanomed: Nanotechnol Biol Med. 2012;8(4):460–7.

    Article  CAS  Google Scholar 

  82. Tangri P, Khurana S. Basics of ocular drug delivery systems. Int J Res Pharmaceut Biomed Sci. 2011;2(4):1541–52.

    Google Scholar 

  83. Thakur RR, Kashiv M. Modern delivery systems for ocular drug formulations: a comparative overview WRT conventional dosage form. Int J Res Pharmaceut Biomed Sci. 2011;2:8–18.

    Google Scholar 

  84. Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Augustijns P, et al. A screening study of surface stabilization during the production of drug nanocrystals. J.Pharm.Sci. 2009;98(6):2091–103.

    Article  PubMed  CAS  Google Scholar 

  85. Xia D, Quan P, Piao H, Piao H, Sun S, Yin Y, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40(4):325–34.

    Article  CAS  PubMed  Google Scholar 

  86. Young TJ, Mawson S, Johnston KP, Henriksen IB, Pace GW, Mishra AK. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol Prog. 2000;16(3):402–7.

    Article  CAS  PubMed  Google Scholar 

  87. Zucca N, Erriu G, Onnis S, Longoni A. An analytical expression of the output of a power compensated DSC in a wide temperature range. Thermochim Acta. 2002;143:117–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Syed Sarim Imam, Imran Kazmi or Muhammad Afzal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahangir, M.A., Imam, S.S., Muheem, A. et al. Nanocrystals: Characterization Overview, Applications in Drug Delivery, and Their Toxicity Concerns. J Pharm Innov 17, 237–248 (2022). https://doi.org/10.1007/s12247-020-09499-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09499-1

Keywords

Navigation