Skip to main content

Advertisement

Log in

Drug-Free Cyclodextrin-Based Nanosponges for Antimicrobial Activity

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Conventional and novel drug delivery systems encompass therapeutic effects for treatment and management of various conditions like cancer, diabetes, and Alzheimer’s disease but mostly show side or adverse effects. To overcome such undesirable effects, new approaches like functionalized polymers, biocarriers, drug-free particles, and metallic nanocomposite display potential applications in healthcare. Presently, nanosponges emerge as a promising carrier in various fields like agriculture, textile, fire engineering, drug delivery, and sterilization.

Methods

β-Cyclodextrin cross-linked nanosponges are porous, biocompatible, biomimetic, and therapeutic carrier for enhancing solubility, bioavailability, and stability and offering desirable pharmacokinetic profiles. Among these diversified applications of nanosponges, still, there is a lack of research interest on Gram-positive and Gram-negative microorganisms. Such drug-free nanosponges will act as an alternative to avoid or reduce toxic effects and resistance to therapeutics. So, the objective of the present study was to investigate the antimicrobial action of β-cyclodextrin-based nanosponges prepared by polymer condensation and interfacial phenomenon methods on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, Candida albicans, and Clostridia perfringens.

Results

β-Cyclodextrin cross-linked nanosponges showed spherical structure with a particle size range of 100–600 nm with 0.1–0.5 of polydispersity index (PdI). The antimicrobial studies indicated that the formulations were effective against various microorganisms like E. coli > P. aeruginosa > S. aureus > S. typhi > C. albicans > Clostridia.

Conclusions

Thus, carbonyldiimidazole cross-linked β-cyclodextrin-based nanosponges showed antimicrobial activity and will emerge as an antimicrobial agent in the form of drug-free therapy against various microbes in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang L, Pornpattananangkul D, Hu CMJ, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17:585–94.

    Article  CAS  Google Scholar 

  2. Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbio. 2010;1:134.

    Article  Google Scholar 

  3. Phennapha S, Chutimon M, Phatsawee J, Thorsteinn L. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. 2018;23:1161.

    Article  Google Scholar 

  4. Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems: applications. J Pharm Bioallied Sci. 2010;2:72–9.

    Article  CAS  Google Scholar 

  5. Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem. 2012;8:2091–9.

    Article  CAS  Google Scholar 

  6. Trotta F, Shende P, Biasizzo M. Method for preparing dextrin nanosponges. WO2012147069 A1. European Medicines Agency. ICH Q1A (R2), Stability Testing of new Drug Substances and Products (2003).

  7. Kumar S, Sihag P, Trotta F, Rao R. Encapsulation of babchi oil in cyclodextrin-based nanosponges: physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics. 2018;10:169.

    Article  CAS  Google Scholar 

  8. Yanez C, Canete-Rosales P, Castillo JP, Catalan N, Undabeytia T, Morillo E. Cyclodextrin inclusion complex to improve physicochemical properties of herbicide bentazon: exploring better formulations. PLoS One. 2012;7(8):e41072.

    Article  CAS  Google Scholar 

  9. Shende PK, Gaud RS, Bakal R, Patil D. Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf B Biointerfaces. 2015;136:105–10.

    Article  CAS  Google Scholar 

  10. Shende PK, Kulkarni YA, Gaud RS, Deshmukh K, Cavalli R, Trotta F, et al. Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. JPharm Sci. 2015;104:1856–63.

    Article  CAS  Google Scholar 

  11. European Medicines Agency. ICH Q1A (R2), Stability Testing of new Drug Substances and Products (2003).

  12. Goy RC, Morais STB. Assis OBG. Evaluation of antimicrobial activity of chitosan and its quaternized derivate on E coli and S aureus growth. Rev Bras Farmacogn. 2016;26:122–7.

    Article  CAS  Google Scholar 

  13. Zafar N, Shamaila S, Nazir J, Sharif R, Rafique MS, Hasan J, et al. Antibacterial action of chemically synthesized and laser generated silver nanoparticles against human pathogenic bacteria. J Mater Sci Technol. 2016;32(8):721–8.

    Article  CAS  Google Scholar 

  14. Shende PK, Trotta F, Gaud RS, Deshmukh K, Cavalli R, Biasizzo M. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with b-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J Incl Phenom Macrocycl Chem. 2012;74:447–54.

    Article  CAS  Google Scholar 

  15. Bajaj S, Singla D, Sakhuja N. Stability testing of pharmaceutical products. J Appl Pharm Sci. 2012;2:129–38.

    Google Scholar 

  16. Totoli EG, Salgado HR. Rapid turbidimetric assay to determine the potency of daptomycin in lyophilized powder. Pharmaceutics. 2015;7:106–21.

    Article  CAS  Google Scholar 

  17. Martínez-Castanón GA, Nino-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10:1343–8.

    Article  Google Scholar 

  18. Halder, et al. Alteration of zeta potential and membrane permeability in bacteria: a study with cationic agents. SpringerPlus. 2015;4:672.

    Article  Google Scholar 

  19. Swaminathan S, Vavia PR, Trotta F, Cavalli R, Tumbiolo S, Bertinetti L, et al. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J Incl Phenom Macrocycl Chem. 2013;76:201–11.

    Article  CAS  Google Scholar 

  20. Trotta F, Cavalli R. Characterization and applications of new hyper-cross-linked cyclodextrins. Compos Interfaces. 2009;16:39–48.

    Article  CAS  Google Scholar 

  21. Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. 5th ed: Pharmaceutical press; 2006. p. 217–21.

  22. Sambasevam KP, Mohamad S, Sarih NM, Ismail NA. Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethine. Int J Mol Sci. 2013;14:3671–82.

    Article  CAS  Google Scholar 

  23. Li W, Lu B, Sheng A, Yang F, Wang Z. Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin. J Mol Struct. 2010;981:194–203.

    Article  CAS  Google Scholar 

  24. Radiopaque hemocompatible ruminant-sourced gut material with antimicrobial physiognomies for biomedical applications in diabetics. ACS Omega. 2017;2:755–64.

  25. Microencapsulation of α-tocopherol with zein and β-cyclodextrin using spray drying for colour stability and shelf-life improvement of fruit beverages. RSC Adv. 2017;7:32065–75.

  26. Djedaini F, Lin SZ, Perly B, Wouessidjewe D. High-field nuclear magnetic resonance techniques for the investigation of a β-cyclodextrin:indomethacin inclusion complex. J Pharm Sci. 1990;79:643–6.

    Article  CAS  Google Scholar 

  27. Youming Z, Xinrong D, Liangcheng W, Taibao W. Synthesis and characterization of inclusion complexes of aliphatic-aromatic poly(Schiff base)s with β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2008;60:313–9.

    Article  Google Scholar 

  28. Chen M, Diao G, Zhang E. Study of inclusion complex of β-cyclodextrin and nitrobenzene. Chemosphere. 2006;63:522–9.

    Article  CAS  Google Scholar 

  29. Ferro M, Castiglione F, Punta C, Melone L, Panzeri W, Rossi B, et al. Anomalous diffusion of ibuprofen in cyclodextrin nanosponge hydrogels: an HRMAS NMR study. Beilstein J Org Chem. 2014;10:2715–23.

    Article  Google Scholar 

  30. Bar R, Ulitzur S. Bacterial toxicity of cyclodextrins: luminuous Escherichia coli as a model. Appl Microbiol Biotechnol. 1994;41:574–7.

    Article  CAS  Google Scholar 

  31. Mikhail N, Kwai T, Zazail M, Hamid S. Treatment of cotton by β-cyclodextrin/triclosan inclusion complex and factors affecting antimicrobial properties. Fibers and polymers. 2018;19:548–60.

    Article  Google Scholar 

  32. Barnaby R, Koeppen K, Stanton BS. Cyclodextrins reduce the ability of Pseudomonas aeruginosa outer-membrane vesicles to reduce CFTR Cl- secretion. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L206–15.

    Article  CAS  Google Scholar 

  33. Susanne F, Cornelia W, Hans-Jürgen B, Uta-Christina H. Antimicrobial properties of cyclodextrin–antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay. Int J Phar. 2012;439:851–6.

    Google Scholar 

  34. Denis Z, Shu G, Tendo J, Merveille T, Jules CA. In vitro and in vivo anti-Salmonella evaluation of pectin extracts and hydrolysates from “Cas Mango” (Spondias dulcis). Evid Based Complement Alternat Med. 2019:1–10.

  35. Robinsona TM, Jicsinszkya L, Karginovc AV, Karginov VA. Inhibition of clostridium perfringens epsilon toxin by β-cyclodextrin derivatives. Int J Pharm. 2017;531(2):714–7.

    Article  Google Scholar 

Download references

Funding

We are thankful to DST-SERB, Government of India (ECR/2017/001184), for providing a grant to perform this activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Shende.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, D., Shende, P. Drug-Free Cyclodextrin-Based Nanosponges for Antimicrobial Activity. J Pharm Innov 16, 258–268 (2021). https://doi.org/10.1007/s12247-020-09442-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09442-4

Keywords

Navigation