Skip to main content
Log in

The Impact of Solid Dispersion on Formulation, Using Confocal Micro Raman Spectroscopy as Tool to Probe Distribution of Components

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Solid dispersions (SDs) of a poorly water-soluble drug were prepared, and their physicochemical properties were compared to those of control physical mixtures (PMs). Among the multiple techniques used to characterize the solid state of preparations, confocal micro Raman spectroscopy (CMRS) was used as a non-destructive tool to qualitatively probe content uniformity and distribution of drug and carrier.

Methods

SDs and PMs of drug (fenbendazole, FBZ) were prepared containing two different carriers (poloxamer P188 or P407) with different drug polymer ratios. The preparations were characterized by powder X-ray diffractometry, Fourier transform infrared spectroscopy, thermal analysis, scanning electron microscopy, and in vitro dissolution assay. In addition, CMRS technique and principal component analysis (PCA) were used in order to statistically define the content uniformity and distribution of the drug within the polymeric matrix.

Results

In vitro dissolution results exhibited a marked improvement when the drug was formulated as SD compared to control PM and to pure drug. The solid state of these preparations characterized by X-ray powder diffraction and Fourier transform infrared spectroscopy showed no changes in the crystalline state of the drug and no chemical interactions between the components. Raman studies showed a better content uniformity of the drug within the polymeric matrix when subjected to SD process, correlating with the improved dissolution profile.

Conclusion

This study provides evidence of the potential of the confocal Raman imaging technique, providing a fast and powerful method to characterize solid dispersions which could be incorporated towards the use of quality by design (QbD) approaches in pharmaceutical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010;62(11):1607–21. https://doi.org/10.1111/j.2042-7158.2010.01030.x.

    Article  CAS  PubMed  Google Scholar 

  2. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60. https://doi.org/10.1016/S0939-6411(00)00076-X.

    Article  CAS  PubMed  Google Scholar 

  3. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23):1068–75. https://doi.org/10.1016/j.drudis.2007.09.005.

    Article  CAS  PubMed  Google Scholar 

  4. Brough C, Williams RO. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm. 2013;453(1):157–66. https://doi.org/10.1016/j.ijpharm.2013.05.061.

    Article  CAS  PubMed  Google Scholar 

  5. Vo CL-N, Park C, Lee B-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3):799–813. https://doi.org/10.1016/j.ejpb.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  6. Mehanna MM, Motawaa AM, Samaha MW. In sight into tadalafil–block copolymer binary solid dispersion: mechanistic investigation of dissolution enhancement. Int J Pharm. 2010;402(1):78–88. https://doi.org/10.1016/j.ijpharm.2010.09.024.

    Article  CAS  PubMed  Google Scholar 

  7. Bhandari KH, Newa M, Kim JA, Yoo BK, Woo JS, Lyoo WS, et al. Preparation, characterization and evaluation of coenzyme Q10 binary solid dispersions for enhanced solubility and dissolution. Biol Pharm Bull. 2007;30(6):1171–6. https://doi.org/10.1248/bpb.30.1171.

    Article  CAS  PubMed  Google Scholar 

  8. U.S. Food and Drug Administration, Center for Drugs Evaluation Research (CDER), Center for Veterinary Medicine (CVM) and Office of Regulatory Affairs (ORA). Guidance for Industry: PAT - A Framework for Innovative Pharmaceutical Development. 2004.https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070305.pdf. Accessed 11 Dec 2017.

  9. Vasanthavada M, Tong W-Q, Serajuddin A. Development of solid dispersions for poorly water-soluble drugs. In: Liu R, editor. Water insoluble-drug formulation. 2nd ed. Boca Raton: CRC Press; 2008. p. 499–529.

  10. Karavas E, Georgarakis M, Docoslis A, Bikiaris D. Combining SEM, TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix. Int J Pharm. 2007;340(1):76–83. https://doi.org/10.1016/j.ijpharm.2007.03.037.

    Article  CAS  PubMed  Google Scholar 

  11. Furuyama N, Hasegawa S, Hamaura T, Yada S, Nakagami H, Yonemochi E, et al. Evaluation of solid dispersions on a molecular level by the Raman mapping technique. Int J Pharm. 2008;361(1):12–8. https://doi.org/10.1016/j.ijpharm.2008.05.009.

    Article  CAS  PubMed  Google Scholar 

  12. Punčochová K, Vukosavljevic B, Hanuš J, Beránek J, Windbergs M, Štěpánek F. Non-invasive insight into the release mechanisms of a poorly soluble drug from amorphous solid dispersions by confocal Raman microscopy. Eur J Pharm Biopharm. 2016;101:119–25. https://doi.org/10.1016/j.ejpb.2016.02.001.

    Article  PubMed  Google Scholar 

  13. Schoenherr C, Haefele T, Paulus K, Francese G. Confocal Raman microscopy to probe content uniformity of a lipid based powder for inhalation: a quality by design approach. Eur J Pharm Sci. 2009;38(1):47–54. https://doi.org/10.1016/j.ejps.2009.05.011.

    Article  CAS  PubMed  Google Scholar 

  14. Haefele T, Paulus K. Confocal raman microscopy in pharmaceutical development. In: Dieing T, Hollricher O, Toporski J, editors. Confocal raman microscopy. Springer series in optical sciences. Heidelberg: Springer; 2010. p. 165–202.

  15. Choi DS, Zhang Y-E, Tian H, Shah N, Chokshi HP. Evaluation on the drug–polymer mixing status in amorphous solid dispersions at the early stage formulation and process development. J Pharm Innov. 2013;8(3):163–74.

    Article  Google Scholar 

  16. Campbell WC. Benzimidazoles: veterinary uses. Parasitol Today. 1990;6(4):130–3. https://doi.org/10.1016/0169-4758(90)90231-R.

    Article  CAS  PubMed  Google Scholar 

  17. Saunders GI, Wasmuth JD, Beech R, Laing R, Hunt M, Naghra H, et al. Characterization and comparative analysis of the complete Haemonchus contortus β-tubulin gene family and implications for benzimidazole resistance in strongylid nematodes. Int J Parasitol. 2013;43(6):465–75. https://doi.org/10.1016/j.ijpara.2012.12.011.

    Article  CAS  PubMed  Google Scholar 

  18. Longo M, Zanoncelli S, Messina M, Scandale I, Mackenzie C, Geary T, et al. In vivo preliminary investigations of the effects of the benzimidazole anthelmintic drug flubendazole on rat embryos and fetuses. Reprod Toxicol. 2014;49:33–42. https://doi.org/10.1016/j.reprotox.2014.06.009.

    Article  CAS  PubMed  Google Scholar 

  19. Munguía B, Michelena M, Melian E, Saldaña J, Ures X, Manta E, et al. Development of novel valerolactam-benzimidazole hybrids anthelmintic derivatives: diffusion and biotransformation studies in helminth parasites. Exp Parasitol. 2015;153:75–80. https://doi.org/10.1016/j.exppara.2015.03.013.

    Article  PubMed  Google Scholar 

  20. Munguía B, Mendina P, Espinosa R, Lanz A, Saldaña J, Andina MJ, et al. Synthesis and anthelmintic evaluation of novel valerolactam-benzimidazole hybrids. Lett Drug Des Discovery. 2013;10(10):1007–14. https://doi.org/10.2174/15701808113109990028.

    Article  Google Scholar 

  21. Hennessy DR. Modifying the formulation or delivery mechanism to increase the activity of anthelmintic compounds. Vet Parasitol. 1997;72(3):367–90. https://doi.org/10.1016/S0304-4017(97)00106-4.

    Article  CAS  PubMed  Google Scholar 

  22. Vilhelmsen T, Eliasen H, Schæfer T. Effect of a melt agglomeration process on agglomerates containing solid dispersions. Int J Pharm. 2005;303(1):132–42. https://doi.org/10.1016/j.ijpharm.2005.07.012.

    Article  CAS  PubMed  Google Scholar 

  23. Zhai H, Li S, Andrews G, Jones D, Bell S, Walker G. Nucleation and growth in fluidised hot melt granulation. Powder Technol. 2009;189(2):230–7. https://doi.org/10.1016/j.powtec.2008.04.021.

    Article  CAS  Google Scholar 

  24. Kibbe AH, American Pharmaceutical A. Handbook of pharmaceutical excipients. Washington, D.C.: American Pharmaceutical Association; 2000.

    Google Scholar 

  25. Xie F, Ji S, Cheng Z. In vitro dissolution similarity factor (f2) and in vivo bioequivalence criteria, how and when do they match? Using a BCS class II drug as a simulation example. Eur J Pharm Sci. 2015;66:163–72. https://doi.org/10.1016/j.ejps.2014.10.002.

    Article  CAS  PubMed  Google Scholar 

  26. Pharmacopeia U. USP 29–NF 24. Rockville: USP; 2005.

    Google Scholar 

  27. Castro SG, Bruni SS, Lanusse CE, Allemandi DA, Palma SD. Improved albendazole dissolution rate in Pluronic 188 solid dispersions. AAPS PharmSciTech. 2010;11(4):1518–25. https://doi.org/10.1208/s12249-010-9517-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horvat AJ, Babić S, Pavlović D, Ašperger D, Pelko S, Kaštelan-Macan M, et al. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal Chem. 2012;31:61–84. https://doi.org/10.1016/j.trac.2011.06.023.

    Article  CAS  Google Scholar 

  29. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–44. https://doi.org/10.1016/S0378-5173(01)00891-2.

    Article  CAS  PubMed  Google Scholar 

  30. Eaton JW, Bateman D, Hauberg S, Wehbring R. A high-level interactive language for numerical computations. In GNU Octave version 4.2.1. Free Software Foundation. 2017. https://www.gnu.org/software/octave/octave.pdf. Accessed 11 Dec 2017.

Download references

Acknowledgments

The authors especially thank Dario O. Weitmann, Business Coordinator BCS in BASF Argentina S.A for the Poloxamer samples, Q.F. Antonio Malanga (BIOTEFA—Instituto Polo Tecnológico de Pando, Facultad de Química, UdelaR, Uruguay) for kindly providing access to the necessary equipment, and Lourdes Martino, who edited this paper. The authors acknowledge Prof. Dr. Alejandro Ayala (Universidade Federal do Ceará, UFC, Brazil) for providing DSC and TG measurement, and Fernando Pignanelli (Facultad de Química, UdelaR, Uruguay) for the help in the implementation of PCA and the peak-to-peak computational scripts for the data analysis.

Funding

This work was supported by grants from the Programa de Desarrollo de Ciencias Básicas (PEDECIBA, Uruguay), ANII (Agencia Nacional de Investigación e Innovación, Uruguay), Project ANII-EQC-X-2012-1-14 IPTP, AUGM (Asociación de Universidades del Grupo Montevideo), SECyT-UNC, CONICET, ANPCyT (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Domínguez.

Electronic supplementary material

Online Resource 1

(PDF 119 kb)

Online Resource 2

(PDF 60 kb)

Online Resource 3

(PDF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melian, M.E., Munguía, A.B., Faccio, R. et al. The Impact of Solid Dispersion on Formulation, Using Confocal Micro Raman Spectroscopy as Tool to Probe Distribution of Components. J Pharm Innov 13, 58–68 (2018). https://doi.org/10.1007/s12247-017-9306-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-017-9306-9

Keywords

Navigation