Skip to main content

Advertisement

Log in

Spatial Variation in Nursery Habitat Use by Juvenile Blue Crabs in a Shallow, Wind-Driven Estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Nursery habitats promote the survival of juveniles to the adult population and are often targeted by conservation policies and restoration practices. Managers must choose where to focus limited resources, which is complicated when juveniles utilize multiple habitats. This is particularly applicable to the blue crab (Callinectes sapidus) population in North Carolina, USA, which uses three main habitats, low salinity ephemeral Ruppia maritima seagrass beds, high salinity mixed-species seagrass beds, and shallow marsh detrital habitat (SDH). Spatial variation in early juvenile blue crab density and size-class of blue crab instars (2.2–20 mm) was quantified within the Albemarle-Pamlico estuarine system (APES) together with potential explanatory variables such as habitat structural complexity and proximity to inlets, potentially driving spatial variation in crab density and size. Despite being 25–40 km from oceanic sources of megalopae, juvenile crab density was nearly four times greater in ephemeral R. maritima habitat on the western shore of the APES than adjacent SDH or mixed-species seagrass beds located near inlet sources. Increased crab density in western habitats may be a result of cross-sound transport being hurricane-driven as opposed to secondary density-dependent distribution resulting in increased recruitment to western habitats. Local-scale factors also affected crab distribution patterns. For example, mean crab density in mixed-species seagrass beds along the eastern shore decreased by approximately 87% over a distance of 26.6 km from inlet sources of megalopae. Mean crab density in western R. maritima beds increased tenfold between locations with the lowest shoot density (~ 14,000 shoots m−2) to that with the highest (~ 54,000 shoots m−2). This study highlights how regional postlarval dispersal patterns and local-scale factors affect nursery habitat use by blue crabs when multiple habitats are present in a seascape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike, Hirotugu. 1974. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control 19: 716–723. https://doi.org/10.1109/TAC.1974.1100705.

    Article  Google Scholar 

  • Balbi, Manon, Eric J. Petit, Solene Croci, Jean Nabucet, Romain Georges, Luc Madec, and Aude Ernoult. 2019. Ecological relevance of least cost path analysis: An easy implementation method for landscape urban planning. Journal of Environmental Management 244: 61–68. https://doi.org/10.1016/j.jenvman.2019.04.124.

    Article  Google Scholar 

  • Beck, M.W., Kenneth L. Heck, K.W. Able, D.L. Childers, David B. Eggleston, Bronwyn M. Gillanders, B.S. Halpern, et al. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51: 633–641. https://doi.org/10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2.

    Article  Google Scholar 

  • Bell, Johann D., and Mark Westoby. 1986. Abundance of macrofauna in dense seagrass is due to habitat preference, not predation 68: 205–209.

  • Blackmon, Derrick C., and David B. Eggleston. 2001. Factors influencing planktonic, post-settlement dispersal of early juvenile blue crabs (Callinectes sapidus Rathbun). Journal of Experimental Marine Biology and Ecology 257: 183–203. https://doi.org/10.1016/S0022-0981(00)00334-8.

    Article  Google Scholar 

  • Bostrom, C., and E. Bonsdorff. 2000. Zoobenthic community establishment and habitat complexity - The importance of seagrass shoot-density, morphology and physical disturbance for faunal recruitment. Marine Ecology Progress Series 205: 123–138. https://doi.org/10.3354/meps205123.

    Article  Google Scholar 

  • Carr, S.D., R.A. Tankersley, J.L. Hench, R.B. Forward Jr., and R.A. Luettich. 2004. Movement patterns and trajectories of ovigerous blue crabs Callinectes sapidus during the spawning migration. Estuarine, Coastal & Shelf Science 60: 567–579.

    Article  Google Scholar 

  • Dahlgren, Craig P., G. Todd Kellison, Aaron J. Adams, Bronwyn M. Gillanders, Matthew S. Kendall, Craig A. Layman, Janet A. Ley, Ivan Nagelkerken, and Joseph E. Serafy. 2006. Marine nurseries and effective juvenile habitats: Concepts and applications. Marine Ecology Progress Series 312: 291–295. https://doi.org/10.3354/meps312291.

    Article  Google Scholar 

  • Eggleston, David B. 1995. Recruitment in Nassau grouper Epinephelus striatus: Post-settlement abundance, microhabitat features, and ontogenetic habitat shifts. Marine Ecology Progress Series 124: 9–22. https://doi.org/10.3354/meps124009.

    Article  Google Scholar 

  • Eggleston, David B., Nathalie B. Reyns, Lisa L. Etherington, Gayle R. Plaia, and Lian Xie. 2010. Tropical storm and environmental forcing on regional blue crab (Callinectes sapidus) settlement. Fisheries Oceanography 19: 89–106. https://doi.org/10.1111/j.1365-2419.2009.00530.x.

    Article  Google Scholar 

  • Epifanio, C.E., and R.W. Garvine. 2001. Larval transport on the Atlantic Continental Shelf of North America: A review. Estuarine, Coastal and Shelf Science 52: 51–77. https://doi.org/10.1006/ecss.2000.0727.

    Article  Google Scholar 

  • Etherington, Lisa L., and David B. Eggleston. 2000. Large-scale blue crab recruitment: Linking postlarval transport, post-settlement planktonic dispersal, and multiple nursery habitats. Marine Ecology Progress Series 204: 179–198. https://doi.org/10.3354/meps204179.

    Article  Google Scholar 

  • Etherington, Lisa L., and David B. Eggleston. 2003. Spatial dynamics of large-scale, multistage crab (Callinectes sapidus) dispersal: Determinants and consequences for recruitment. Canadian Journal of Fisheries and Aquatic Sciences 60: 873–887. https://doi.org/10.1139/f03-072.

    Article  Google Scholar 

  • Etherington, Lisa L., David B. Eggleston, and William. Stockhausen. 2003. Partitioning loss rates of early juvenile blue crabs from seagrass habitats into mortality and emigration. Bulletin of Marine Science 72 (2): 371–392.

    Google Scholar 

  • Forward, Richard B., Mona C. DeVries, Dan Rittschof, David A.Z.. Frankel, Jennifer P. Bischoff, Carlie M. Fisher, and James M. Welch. 1996. Effects of environmental cues on metamorphosis of the blue crab Callinectes sapidus. Marine Ecology Progress Series 131: 165–177. https://doi.org/10.3354/meps131165.

    Article  Google Scholar 

  • Fulford, R.S., M.S. Peterson, and P.O. Grammer. 2011. An ecological model of the habitat mosaic in estuarine nursery areas: Part I-Interaction of dispersal theory and habitat variability in describing juvenile fish distributions. Ecological Modelling 222. Elsevier B.V.: 3203–3215. https://doi.org/10.1016/j.ecolmodel.2011.07.001.

  • Gosselin, Louis A., and Pei Yuan Qian. 1997. Juvenile mortality in benthic marine invertebrates. Marine Ecology Progress Series 146: 265–282. https://doi.org/10.3354/meps146265.

    Article  Google Scholar 

  • Heck, Kenneth L., and Robert J. Orth. 1980. Seagrass habitats: The roles of habitat complexity, competition and predation in structuring associated fish and motile macroinvertebrate assemblages. Estuarine Perspectives. https://doi.org/10.1016/b978-0-12-404060-1.50043-5.

    Article  Google Scholar 

  • Heck, Kenneth L., and Timothy A. Thoman. 1984. The nursery role of seagrass meadows in the upper and lower reaches of the Chesapeake Bay. Estuaries 7: 70–92. https://doi.org/10.2307/1351958.

    Article  Google Scholar 

  • Heck, Kenneth L., G. Hays, and Robert J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253: 123–136.

    Article  Google Scholar 

  • Hsueh, Pan-Wen W., James B. McClintock, and Thomas S. Hopkins. 1992. comparative study of the diet of the blue crabs Callinectes similis and C. Sapidus from a mud-bottom habitat in Mobile Bay Alabama. Journal of Crustacean Biology 12: 615–619. https://doi.org/10.1163/193724092X00094.

    Article  Google Scholar 

  • Hunt, Heather L., and Robert E. Scheibling. 1997. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Marine Ecology Progress Series 155: 269–301. https://doi.org/10.3354/meps155269.

    Article  Google Scholar 

  • Hyman, A. Challen., Grace S. Chiu, Mary C. Fabrizio, and Romuald N. Lipcius. 2022. Spatiotemporal modeling of nursery habitat using Bayesian inference: Environmental drivers of juvenile blue crab abundance. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2022.834990.

    Article  Google Scholar 

  • Johnston, Cora Ann, and Romuald N. Lipcius. 2012. Exotic macroalga Gracilaria vermiculophylla provides superior nursery habitat for native blue crab in Chesapeake Bay. Marine Ecology Progress Series 467: 137–146. https://doi.org/10.3354/meps09935.

    Article  Google Scholar 

  • Kennedy, Victor S, and Lewis Eugene Cronin. 2007. The blue crab: Callinectes sapidus. Maryland Sea Grant College University of Maryland.

  • Lefcheck, Jonathan S., Brent B. Hughes, Andrew J. Johnson, Bruce W. Pfirrmann, Douglas B. Rasher, Ashley R. Smyth, Bethany L. Williams, Michael W. Beck, and Robert J. Orth. 2019. Are coastal habitats important nurseries? A meta-analysis. Conservation Letters 12: 1–12. https://doi.org/10.1111/conl.12645.

    Article  Google Scholar 

  • Levin, Phillip S., and Gregory W. Stunz. 2005. Habitat triage for exploited fishes: Can we identify essential “Essential Fish Habitat?” Estuarine, Coastal and Shelf Science 64: 70–78. https://doi.org/10.1016/j.ecss.2005.02.007.

    Article  Google Scholar 

  • Lipcius, Romuald N., David B. Eggleston, Kenneth L. Heck, Rochelle D. Seitz, and Jacques Van Montfrans. 2007. Post-settlement abundance, survival, and growth of postlarvae and young juvenile blue crabs in nursery habitats. Blue Crab: Callinectes sapidus: 535–566.

  • Lipcius, Romuald N., Rochelle D. Seitz, Michael S. Seebo, and Duamed Colón-Carrión. 2005. Density, abundance and survival of the blue crab in seagrass and unstructured salt marsh nurseries of Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 319: 69–80. https://doi.org/10.1016/j.jembe.2004.12.034.

    Article  Google Scholar 

  • Mense, D., M. Posey, T. West, and K. Kincheloe. 1995. Settlement of Brachyuran postlarvae along the North Carolina coast. Bulletin of Marine Science 57: 793–806.

    Google Scholar 

  • Pullinger, Michael G., and Chris J. Johnson. 2010. Maintaining or restoring connectivity of modified landscapes: Evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecology 25: 1547–1560. https://doi.org/10.1007/s10980-010-9526-6.

    Article  Google Scholar 

  • Montfrans, Van, Clifford H. Jacques, and Ryer, and Robert J. Orth. 2003. Substrate selection by blue crab Callinectes sapidus megalopae and first juvenile instars. Marine Ecology Progress Series 260: 209–217. https://doi.org/10.3354/meps260209.

    Article  Google Scholar 

  • Nagelkerken, Ivan, Marcus Sheaves, Ronald Baker, and Rod M. Connolly. 2015. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries 16: 362–371. https://doi.org/10.1111/faf.12057.

    Article  Google Scholar 

  • NCDEQ (North Carolina Department of Environmental Quality). 2022. North Carolina Coastal Habitat Protection Plan, Research Priorities. Morehead City, NC. Division of Marine Fisheries. 4.

  • NCDMF. 2018. Stock assessment of the North Carolina blue crab: 79.

  • Orth, Robert J., and Kenneth L. Heck. 1980. Structural components of eelgrass (Zostera marina) meadows in the lower Chesapeake Bay—Fishes. Estuaries 3: 278–288. https://doi.org/10.2307/1352083.

    Article  Google Scholar 

  • Orth, Robert J., and Jacques Van Montfrans. 1987. Utilization of a seagrass meadow and tidal marsh creek by blue crabs Callinectes sapidus. I. Seasonal and annual variations in abundance with emphasis on post-settlement juveniles. Marine Ecology Progress Series 41: 283–294. https://doi.org/10.3354/meps041283.

    Article  Google Scholar 

  • Pietrafesa, Leonard J, and Gerald S Janowitz. 1991. The Albemarle-Pamlico coupling study. Final Report to the Environmental Protection Agency.

  • Pietrafesa, Leonard J, Gerald S Janowitz, Tieh-Ting Chao, Robert H Weisberg, Farid Askari, and Elizabeth Noble. 1986. The Physical Oceanography of Pamlico Sound. UNC Sea Grant Publication. Vol. UNC-WP-86-.

  • Pile, Adele J., Romuald N. Lipcius, Jacques Van Montfrans, and Robert J. Orth. 1996. Density-dependent settler-recruit-juvenile relationships in blue crabs. Ecological Monographs 66: 277–300. https://doi.org/10.2307/2963519.

    Article  Google Scholar 

  • Pittman, S.J., K.L. Yates, P.J. Bouchet, D. Alvarez-Berastegui, S. Andréfouët, S.S. Bell, C. Berkström, et al. 2021. Seascape ecology: Identifying research priorities for an emerging ocean sustainability science. Marine Ecology Progress Series 663. Inter-Research Science Center: 1–29. https://doi.org/10.3354/meps13661.

  • Posey, Martin H., Troy D. Alphin, Heather Harwell, and Bryan Allen. 2005. Importance of low salinity areas for juvenile blue crabs, Callinectes sapidus Rathbun, in river-dominated estuaries of southeastern United States. Journal of Experimental Marine Biology and Ecology 319: 81–100. https://doi.org/10.1016/j.jembe.2004.04.021.

    Article  Google Scholar 

  • Reyns, Nathalie B., and David B. Eggleston. 2004. Environmentally-controlled, density-dependent secondary dispersal in a local estuarine crab population. Oecologia 140: 280–288. https://doi.org/10.1007/s00442-004-1581-8.

    Article  Google Scholar 

  • Reyns, Nathalie B., David B. Eggleston, and Richard A. Luettich. 2006. Secondary dispersal of early juvenile blue crabs within a wind-driven estuary. Limnology and Oceanography 51: 1982–1995. https://doi.org/10.4319/lo.2006.51.5.1982.

    Article  Google Scholar 

  • Reyns, Nathalie B., David B. Eggleston, and Richard A. Luettich. 2007. Dispersal dynamics of post-larval blue crabs, Callinectes sapidus, within a wind-driven estuary. Fisheries Oceanography 16: 257–272. https://doi.org/10.1111/j.1365-2419.2007.00420.x.

    Article  Google Scholar 

  • Ruiz, Gregory M., Anson H. Hines, and Martin H. Posey. 1993. Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: An example from Chesapeake Bay. Marine Ecology Progress Series 99: 1–16. https://doi.org/10.3354/meps099001.

    Article  Google Scholar 

  • Schneider, Caroline A., Wayne S. Rasband, and Kevin W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675. https://doi.org/10.1038/nmeth.2089.

    Article  CAS  Google Scholar 

  • Searcy, S., D.B. Eggleston, and J. Hare. 2007. Environmental influences on the relationship between juvenile and larval growth for Atlantic croaker, Micropogonias undulates. Marine Ecology Progress Series 349: 81–88.

    Article  Google Scholar 

  • Seitz, Rochelle D., Hakan Wennhage, Ulf Bergstrom, Romuald N. Lipcius, and Tom Ysebaert. 2014. Ecological value of coastal habitats for commercially and ecologically important species. ICES Journal of Marine Science 71: 648–665.

    Article  Google Scholar 

  • Stockhausen, William T., and Romuald N. Lipcius. 2003. Simulated effects of seagrass loss and restoration on settlement and recruitment of blue crab postlarvae and juveniles in the York River, Chesapeake Bay. Bulletin of Marine Science 72: 409–422.

    Google Scholar 

  • Symonds, Matthew R.E.., and Adnan Moussalli. 2011. A brief guide to model selection, multimodel inference and model averaging in behavioral ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology 65: 13–21. https://doi.org/10.1007/s00265-010-1037-6.

    Article  Google Scholar 

  • Tait, K.J., and K.A. Hovel. 2012. Do predation risk and food availability modify prey and mesopredator microhabitat selection in eelgrass (Zostera marina) habitat? Journal of Experimental Marine Biology and Ecology 426–427. Elsevier B.V.: 60–67. https://doi.org/10.1016/j.jembe.2012.05.024.

  • Tankersley, R.A., M.G. Wieber, M.A. Sigala, and K.A. Kachurak. 1998. Migratory behavior of ovigerous blue crabs Callinectes sapidus: Evidence for selective tidal-stream transport. Biological Bulletin 195: 168–173.

    Article  CAS  Google Scholar 

  • Vasconcelos, R.P., D.B. Eggleston, O. Le Pape, and I. Tulp. 2014. Patterns and processes of habitat-specific demographic variability in exploited marine species. 71: 638–647. https://doi.org/10.1080/136008002200001351.

  • Voigt, E.P., and K.A. Hovel. 2019. Eelgrass structural complexity mediates mesograzer herbivory on epiphytic algae. Oecologia 189: 199–209. Berlin Heidelberg: Springer. https://doi.org/10.1007/s00442-018-4312-2.

  • Welch, James M., Dan Rittschof, Traci M. Bullock, and Richard B. Forward. 1997. Effects of chemical cues on settlement behavior of blue crab Callinectes sapidus postlarvae. Marine Ecology Progress Series 154: 143–153. https://doi.org/10.3354/meps154143.

    Article  Google Scholar 

  • Werner, E.E., and D.J. Hall. 1988. Ontogenetic habitat shifts in bluegill: The foraging rate-predation risk trade-off. Ecology 69: 1352–1366. https://doi.org/10.2307/1941633.

    Article  Google Scholar 

  • Xie, Lian, and David B. Eggleston. 1999. Computer simulations of wind-induced estuarine circulation patterns and estuary-shelf exchange processes: The potential role of wind forcing on larval transport. Estuarine, Coastal and Shelf Science 49: 221–234. https://doi.org/10.1006/ecss.1999.0498.

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to A. Myers, A. Quackenbush, C. Branan, R. P. Lyon, O. Caretti, K. Simmons, D. Bowling, I. Grace, and M. LaCroce for their help in the field, processing samples, and assisting in manuscript revision.

Funding

Funding was provided by NC Sea Grant (R18-HCE-2), Southeastern Climate Adaptation Science Center, Albemarle-Pamlico National Estuarine Partnership (APNEP), Curtis and Edith Munson Foundation, North Carolina Division of Marine Fisheries (2017_H_063 and 2019_H_077), and the Center for Marine Sciences and Technology, NC State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin P. Voigt.

Additional information

Communicated by Melisa C. Wong

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11428 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voigt, E.P., Eggleston, D.B. Spatial Variation in Nursery Habitat Use by Juvenile Blue Crabs in a Shallow, Wind-Driven Estuary. Estuaries and Coasts 46, 526–540 (2023). https://doi.org/10.1007/s12237-022-01143-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-022-01143-0

Keywords

Navigation