Skip to main content

Advertisement

Log in

The Contribution of Groundwater Discharge to Nutrient Exports from a Coastal Catchment: Post-Flood Seepage Increases Estuarine N/P Ratios

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Four months of daily nutrient and radon (a natural groundwater tracer) observations at the outlet of a heavily drained coastal wetland illustrated how episodic floods and diffuse groundwater seepage influence the biogeochemistry of a sub-tropical estuary (Richmond River, New South Wales, Australia). Our observations downstream of the Tuckean Swamp (an acid sulphate soil floodplain) covered a dry stage, a flood triggered by a 213-mm rain event and a post-flood stage when surface water chemistry was dominated by groundwater discharge. Significant correlations were found between radon and ammonium and N/P ratios and between radon and dissolved organic nitrogen (DON) during the post-flood stage. While the flood lasted for 14 % of the time of the surface water time series, it accounted for 18 % of NH4, 32 % of NO x , 66 % of DON, 58 % of PO4 and 55 % of dissolved organic phosphorus (DOP) catchment exports. Over the 4-month study period, groundwater fluxes of 35.0, 3.6, 36.3, 0.5 and 0.7 mmol m−2 day−1 for NH4, NO x , DON, PO4 and DOP, respectively, were estimated. The groundwater contribution to the total surface water catchment exports was nearly 100 % for ammonium, and <20 % for the other nutrients. Post-flood groundwater seepage shifted the system from a DON to a dissolved inorganic N-dominated system and doubled N/P ratios in surface waters. We hypothesise that the Richmond River Estuary N/P ratios may reflect a widespread trend of tidal rivers and estuaries becoming more groundwater-dominated and phosphorus-limited as coastal wetlands are drained for agriculture, grazing and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen, M.S., L. Baron, J. Gudbjerg, J. Gregersen, D. Chapellier, R. Jakobsen, and D. Postma. 2007. Discharge of nitrate-containing groundwater into a coastal marine environment. Journal of Hydrology 336: 98–114.

    Article  Google Scholar 

  • Bowen, J.L., and I. Valiela. 2004. Nitrogen loads to estuaries: Using loading models to assess the effectiveness of management options to restore estuarine water quality. Estuaries 27: 482–500.

    Article  CAS  Google Scholar 

  • Bowen, J.L., K.D. Kroeger, G. Tomasky, W.J. Pabich, M.L. Cole, R.H. Carmichael, and I. Valiela. 2007. A review of land-sea coupling by groundwater discharge of nitrogen to New England estuaries: Mechanisms and effects. Applied Geochemistry 22: 175–191.

    Article  CAS  Google Scholar 

  • Boynton, W.R., J.H. Garber, R. Summers, and W.M. Kemp. 1995. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18: 285–314.

    Article  CAS  Google Scholar 

  • Brodie, R.S., Green, R. and Grahan, M., 2007. Mapping groundwater-dependent ecosystems: A case study in the fractured basalt aquifers of the Alstonville Plateau, NSW, Australia, XXXV IAH Congress. International Association of Hydrogeologists, Lisbon

  • Brush, G.S. 2009. Historical land use, nitrogen, and coastal Eutrophication: a paleoecological perspective. Estuaries and Coasts 32: 18–28.

    Article  CAS  Google Scholar 

  • Burnett, W.C., G. Kim, and D. Lane-Smith. 2001. A continuous monitor for assessment of 222Rn in the coastal ocean. Journal of Radioanalytical and Nuclear Chemistry 249: 167–172.

    Article  CAS  Google Scholar 

  • Burnett, W.C., I.R. Santos, Y. Weinstein, P.W. Swarzenski, and B. Herut. 2007. Remaining uncertainties in the use of Rn-222 as a quantitative tracer of submarine groundwater discharge. In A new focus on groundwater-seawater interactions. Publication No 312, ed. W. Sanford, C. Langevin, M. Polemio, and P. Povinec, 109–118. Perugia: IAHS.

    Google Scholar 

  • Burnett, W.C., S. Chanyotha, G. Wattayakorn, M. Taniguchi, Y. Umezawad, and T. Ishitobi. 2009. Underground sources of nutrient contamination to surface waters in Bangkok, Thailand. Science of The Total Environment 407: 3198–3207.

    Article  CAS  Google Scholar 

  • Burnett, W.C., R.N. Peterson, I.R. Santos, and R.W. Hicks. 2010. Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. Journal of Hydrology 380: 298–304.

    Article  CAS  Google Scholar 

  • Caccia, V.G., and J.N. Boyer. 2005. Spatial patterning of water quality in Biscayne Bay, Florida as a function of land use and water management. Marine Pollution Bulletin 50: 1416–1429.

    Article  CAS  Google Scholar 

  • Charette, M.A. 2007. Hydrologic forcing of submarine groundwater discharge: Insight from a seasonal study of radium isotopes in a groundwater-dominated salt marsh estuary. Limnology and Oceanography 52: 230–239.

    Article  CAS  Google Scholar 

  • Charette, M.A., and M.C. Allen. 2006. Precision groundwater sampling in coastal aquifers using a direct push shielded-screen well-point system. Groundwater Monitoring & Remediation 26: 87–93.

    Article  CAS  Google Scholar 

  • Cook, P.L.M., D.P. Holland, and A.R. Longmore. 2010. Effect of a flood event on the dynamics of phytoplankton and biogeochemistry in a large temperate Australian lagoon. Limnology and Oceanography 55: 1123–1133.

    Article  CAS  Google Scholar 

  • Creed, I.F., and L.E. Band. 1998. Export of nitrogen from catchments within a temperate forest: evidence for a unifying mechanism regulated by variable source area dynamics. Water Resources Research 11: 3105–3120.

    Article  Google Scholar 

  • Crusius, J., D. Koopmans, J.F. Bratton, M.A. Charette, K. Kroeger, P. Henderson, L. Ryckman, K. Halloran, and J.A. Colman. 2005. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model. Biogeosciences 2: 141–157.

    Article  Google Scholar 

  • de Weys, J., I.R. Santos, and B.D. Eyre. 2011. Linking groundwater discharge to severe estuarine acidification during a flood in a modified wetland. Environmental Science & Technology 45: 3310–3316.

    Article  Google Scholar 

  • Eyre, B.D., and A.J.P. Ferguson. 2005. Benthic metabolism and nitrogen cycling in a subtropical east Australian estuary (Brunswick): Temporal variability and controlling factors. Limnology and Oceanography 50: 86–96.

    Article  Google Scholar 

  • Eyre, B.D., and A.J.P. Ferguson. 2006. Impact of a flood event on benthic and pelagic coupling in a sub-tropical east Australian Estuary (Brunswick). Estuarine Coastal and Shelf Science 66: 111–122.

    Article  Google Scholar 

  • Eyre, B.D., and D. Pont. 2003. Intra- and inter-annual variability in the different forms of diffuse nitrogen and phosphorus delivered to seven sub-tropical east Australian estuaries. Estuarine, Coastal and Shelf Science 56: 1–13.

    Article  Google Scholar 

  • Eyre, B.D., G. Kerr, and L.A. Sullivan. 2006. Deoxygenation potential of the Richmond River Estuary floodplain, northern NSW, Australia. River Research and Applications 22: 981–992.

    Article  Google Scholar 

  • Fear, J.M., H.W. Paerl, and J.S. Braddy. 2007. Importance of submarine groundwater discharge as a source of nutrients for the Neuse River Estuary, North Carolina. Estuaries and Coasts 30: 1027–1034.

    CAS  Google Scholar 

  • Ferguson, A., B. Eyre, and J. Gay. 2004. Nutrient cycling in the sub-tropical Brunswick estuary, Australia. Estuaries 27: 1–17.

    Article  CAS  Google Scholar 

  • Hamilton, D.P., G.B. Douglas, J.A. Adeney, and L.C. Radke. 2006. Seasonal changes in major ions, nutrients and chlorophyll a at two sites in the Swan River estuary, Western Australia. Marine and Freshwater Research 57: 803–815.

    Article  CAS  Google Scholar 

  • Harvey, J.W., and P.V. McCormick. 2009. Groundwater's significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hydrogeology Journal 17: 185–201.

    Article  CAS  Google Scholar 

  • Harvey, J.W., J.T. Newlin, and S.L. Krupa. 2006. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA. Journal of Hydrology 320: 400–420.

    Article  Google Scholar 

  • Holden, J., Z.E. Wallage, S.N. Lane, and A.T. McDonald. 2011. Water table dynamics in undisturbed, drained and restored blanket peat. Journal of Hydrology 402: 103–114.

    Article  Google Scholar 

  • Hwang, D.W., Y.W. Lee, and G. Kim. 2005. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnology and Oceanography 50: 1393–1403.

    Article  CAS  Google Scholar 

  • Jiang, R., K.P. Woli, K. Kuramochi, A. Hayakawa, M. Shimizu, and R. Hatano. 2010. Hydrological process controls on nitrogen export during storm events in an agricultural watershed. Soil Science & Plant Nutrition 56: 72–85.

    Article  CAS  Google Scholar 

  • Johnston, S.G., P. Slavich, and P. Hirst. 2004. The acid flux dynamics of two artificial drains in acid sulfate soil backswamps on the Clarence River floodplain, Australia. Australian Journal of Soil Research 42: 623–637.

    Article  CAS  Google Scholar 

  • Johnston, S.G., P.G. Slavich, and P. Hirst. 2005. Opening floodgates in coastal floodplain drains: effects on tidal forcing and lateral transport of solutes in adjacent groundwater. Agricultural Water Management 74: 23–46.

    Article  Google Scholar 

  • Johnston, S., P. Hirst, P. Slavich, R.T. Bush, and T. Aaso. 2009. Saturated hydraulic conductivity of sulfuric horizons in coastal floodplain acid sulfate soils: Variability and implications. Geoderma 151: 387–394.

    Article  CAS  Google Scholar 

  • Kim, G. and Hwang, D.W. 2002. Tidal pumping of groundwater into the coastal ocean revealed from submarine Rn-222 and CH4 monitoring. Geophysical Research Letters, 29: 10.1029/2002GL015093.

  • Knee, K.L., B.A. Layton, J.H. Street, A.B. Boehm, and A. Paytan. 2008. Sources of nutrients and fecal indicator bacteria to nearshore waters on the north shore of Kauaì (Hawaiì, USA). Estuaries and Coasts 31: 607–622.

    Article  CAS  Google Scholar 

  • Koch, G., D. Childers, P. Staehr, R. Price, S. Davis, and E. Gaiser. 2012. Hydrological conditions control P loading and aquatic metabolism in an oligotrophic, subtropical estuary. Estuaries and Coasts 35: 292–307.

    Article  CAS  Google Scholar 

  • Kroeger, K.D., and M.A. Charette. 2008. Nitrogen biogeochemistry of submarine groundwater discharge. Limnology and Oceanography 53: 1025–1039.

    Article  CAS  Google Scholar 

  • Kroeger, K.D., M.L. Cole, and I. Valiela. 2006. Groundwater-transported dissolved organic nitrogen exports from coastal watersheds. Limnology and Oceanography 51: 2248–2261.

    Article  CAS  Google Scholar 

  • Kroeger, K.D., P.W. Swarzenski, W.J. Greenwood, and C. Reich. 2007. Submarine groundwater discharge to Tampa Bay: Nutrient fluxes and biogeochemistry of the coastal aquifer. Marine Chemistry 104: 85–97.

    Article  CAS  Google Scholar 

  • Lee, Y.W., G. Kim, W.A. Lim, and D.W. Hwang. 2010. A relationship between submarine groundwater-borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnology and oceanography 55: 1–10.

    Article  CAS  Google Scholar 

  • Ljung, K., F. Maley, A. Cook, and P. Weinstein. 2009. Acid sulfate soils and human health—A millennium ecosystem assessment. Environment International 35: 1234–1242.

    Article  CAS  Google Scholar 

  • Macdonald, B.C.T., I. White, M.E. Astrom, A.F. Keene, M.D. Melville, and J.K. ReynoldS. 2007. Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia. Applied Geochemistry 22: 2695–2705.

    Article  CAS  Google Scholar 

  • McClelland, J.W., and I. Valiela. 1998. Linking nitrogen in estuarine producers to land-derived sources. Limnology and Oceanography 43: 577–585.

    Article  CAS  Google Scholar 

  • McKee, L.J., B.D. Eyre, and S. Hossain. 2000. Transport and retention of nitrogen and phosphorus in the sub-tropical Richmond River estuary, Australia—A budget approach. Biogeochemistry 50: 241–278.

    Article  CAS  Google Scholar 

  • Mullinger, N.J., A.M. Binley, J.M. Pates, and N.P. Crook. 2007. Radon in Chalk streams: Spatial and temporal variation of groundwater sources in the Pang and Lambourn catchments, UK. Journal of Hydrology 339: 172–182.

    Article  CAS  Google Scholar 

  • Niencheski, L.F.H., H.L. Windom, W.S. Moore, and R.A. Jahnke. 2007. Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Marine Chemistry 106: 546–561.

    Article  CAS  Google Scholar 

  • Null, K.A., N.T. Dimova, K.L. Knee, B.K. Esser, P.W. Swarzenski, M.J. Singleton, M. Stacey, and A. Paytan. 2012. Submarine groundwater discharge-derived nutrient loads to San Francisco Bay: Implications to future ecosystem changes. Estuaries and Coasts 35: 1299–1315.

    Article  CAS  Google Scholar 

  • Paerl, H.W., and J.T. Scott. 2010. Throwing fuel on the fire: Synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environmental Science and Technology 44: 7756–7758.

    Article  CAS  Google Scholar 

  • Paytan, A., G.G. Shellenbarger, H.J. Street, E.M. Gonneea, K.A. Davis, B.M. Young, and W.S. Moore. 2006. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems. Limnology and Oceanography 51: 343–348.

    Article  CAS  Google Scholar 

  • Peterson, R.N., I.R. Santos, and W.C. Burnett. 2010. Evaluating groundwater discharge to tidal rivers based on a Rn-222 time-series approach. Estuarine, Coastal and Shelf Science 86: 165–178.

    Article  CAS  Google Scholar 

  • Robinson, C., L. Li, and H. Prommer. 2007. Tide-induced recirculation across the aquifer-ocean interface. Water Resources Research 43: W07428. doi:07410.01029/02006WR005679.

    Article  Google Scholar 

  • Sammut, J., I. White, and M.D. Melville. 1996. Acidification of an estuarine tributary in eastern Australia due to drainage of acid sulfate soils. Marine and Freshwater Research 47: 669–684.

    Article  CAS  Google Scholar 

  • Santos, I.R., and B.D. Eyre. 2011. Radon tracing of groundwater discharge into an Australian estuary surrounded by coastal acid sulphate soils. Journal of Hydrology 396: 246–257.

    Article  CAS  Google Scholar 

  • Santos, I.R., W. Burnett, J.P. Chanton, B. Mwashote, I.G.N.A. Suryaputra, and T. Dittmar. 2008. Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnology and Oceanography 53: 705–718.

    Article  CAS  Google Scholar 

  • Santos, I.R., W.C. Burnett, T. Dittmar, I.G.N.A. Suryaputra, and J. Chanton. 2009. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochimica et Cosmochimica Acta 73: 1325–1339.

    Article  CAS  Google Scholar 

  • Santos, I.R., J. de Weys, and B.D. Eyre. 2011. Groundwater or floodwater? Assessing the pathways of metal exports from a coastal acid sulfate soil catchment. Environmental Science & Technology 45: 9641–9648.

    Article  CAS  Google Scholar 

  • Santos, I.R., P.L.M. Cook, L. Rogers, J. de Weys, and B.D. Eyre. 2012. The ‘salt wedge pump’: Convection-driven porewater exchange as a source of dissolved organic and inorganic carbon and nitrogen to an estuary. Limnology and Oceanography 57: 1415–1426.

    Article  CAS  Google Scholar 

  • Schmidt, A., J.J. Gibson, I.R. Santos, M. Schubert, K. Tattrie, and H. Weiss. 2010. The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance. Hydrology and Earth System Sciences 14: 79–89.

    Article  CAS  Google Scholar 

  • Seitzinger, S.P., C. Kroeze, A.F. Bouwman, N. Caraco, F. Dentener, and R.V. Styles. 2002. Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: Recent conditions and future projections. Estuaries 25: 640–655.

    Article  CAS  Google Scholar 

  • Seitzinger, S.P., Harrison, J.A., Dumont, E., Beusen, A.H.W. and Bouwman, A.F. 2005. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochemical Cycles, 19: GB4S01, doi:10.1029/2005GB002606.

  • Slomp, C.P., and P. Van Cappellen. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology 295: 64–86.

    Article  CAS  Google Scholar 

  • Smith, S.V., D. Swaney, L. Talaue-McManus, J.D. Bartley, P.T. Sandhei, C.J. McLaughlin, V.C. Dupra, C.J. Crossland, R.W. Buddemeier, B.A. Maxwell, F. Wulff, S.V. Smith, D. Swaney, L. Talaue-McManus, J.D. Bartley, P.T. Sandhei, C.J. McLaughlin, V.C. Dupra, C.J. Crossland, R.W. Buddemeier, B.A. Maxwell, and F. Wulff. 2003. Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean. BioScience 53: 235–245.

    Article  Google Scholar 

  • Smith, C.G., J.E. Cable, and J.B. Martin. 2008. Episodic high intensity mixing events in a subterranean estuary: Effects of tropical cyclones. Limnology and Oceanography 53: 666–674.

    Article  Google Scholar 

  • Spruill, T.B., and J.F. Bratton. 2008. Estimation of groundwater and nutrient fluxes to the Neuse River Estuary, North Carolina. Estuaries and Coasts 31: 501–520.

    Article  CAS  Google Scholar 

  • Statham, P.J. 2012. Nutrients in estuaries—An overview and the potential impacts of climate change. Science of The Total Environment 434: 213–227.

    Google Scholar 

  • Su, N., J. Du, W.S. Moore, S. Liu, and J. Zhang. 2011. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra. Science of The Total Environment 409: 3909–3918.

    Article  CAS  Google Scholar 

  • Taffs, K.H., L.J. Farago, H. Heijnis, and G. Jacobsen. 2008. A diatom-based Holocene record of human impact from a coastal environment: Tuckean Swamp, eastern Australia. Journal of Paleolimnology 39: 71–82.

    Article  Google Scholar 

  • Taniguchi, M., W. Burnett, J.E. Cable, and J.V. Turner. 2002. Investigation of submarine groundwater discharge. Hydrological Processes 16: 2115–2129.

    Article  Google Scholar 

  • Wong, V.N.L., S.G. Johnston, R.T. Bush, L.A. Sullivan, C. Clay, E.D. Burton, and P.G. Slavich. 2010. Spatial and temporal changes in estuarine water quality during a post-flood hypoxic event. Estuarine, Coastal and Shelf Science 87: 73–82.

    Article  CAS  Google Scholar 

  • Zhu, Q., J.P. Schmidt, and R.B. Bryant. 2012. Hot moments and hot spots of nutrient losses from a mixed land use watershed. Journal of Hydrology 414–415: 393–404.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by a Hermon Slade Foundation grant and ARC Grants (LP110200975 and DP120101645). We thank Dirk Erler, Damien Maher, Maria Matthes and local residents for assistance during field work. Bruce Heynatz kindly allowed us to deploy a radon monitor from his property, collected the long-term time series nutrient samples, and provided valuable guidance. The Richmond River County Council supplied long term pH data. Iain Alexander skillfully ran nutrient samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac R. Santos.

Appendix

Appendix

Table 4 Nutrient concentrations in all groundwater samples

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, I.R., de Weys, J., Tait, D.R. et al. The Contribution of Groundwater Discharge to Nutrient Exports from a Coastal Catchment: Post-Flood Seepage Increases Estuarine N/P Ratios. Estuaries and Coasts 36, 56–73 (2013). https://doi.org/10.1007/s12237-012-9561-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9561-4

Keywords

Navigation