Abstract
The processing of potatoes into chips is expanding in China. There is a need for new processing cultivars that are well-suited for the local ecological environment. Eleven potato varieties were bred from hybridization and backcrossing between the local cultivated potato varieties (Solanum tuberosum L.) and wild potato species. Lines from different wild species’ germplasms showed that the ability to accumulate reducing sugars was significantly different during low temperature storage (4 °C). A correlation analysis was conducted to determine the correlation coefficient among reducing sugars, acid invertase, free amino acids, chip colors and the content of acrylamide after storage at room and low temperatures. The lines 0706-116, 0737-6 and 0726-205 had low levels of reducing sugars, acrylamide content and acceptable chip colors for potato chip processing. The results indicated that the transfer of wild species’ processing traits into local cultivars by hybridization and continuous backcrossing is an effective potato breeding method and that the wild germplasm resources S. phureja and S. chacoense are suitable for improving the processing traits of local varieties.
Resumen
El procesamiento de las papas en hojuelas está en expansión en china. Hay necesidad de nuevas variedades para proceso que se adapten al ambiente ecológico local. Se obtuvieron once variedades de papa con hibridación y retrocruzas entre las variedades locales cultivadas de papa (Solanum tuberosum L.) y especies silvestres. Líneas de diferentes germoplasmas de silvestres mostraron que la habilidad para acumular azúcares reductores fue significativamente diferente durante el almacenamiento a baja temperatura (4 °C). Se condujo un análisis para determinar el coeficiente de correlación entre azúcares reductores, ácido invertasa, aminoácidos libres, coloración de la hojuela y el contenido de acrilamida después del almacenamiento a temperatura ambiente y en frío. Las líneas 0706-116, 0737-6 y 0726-205 tuvieron bajos niveles de azúcares reductores contenido de acrilamida y coloración aceptable de la hojuela para procesamiento. Los resultados indicaron que la transferencia de caracteres de procesamiento de especies silvestres a variedades locales mediante hibridación y retrocruzas continuas es un método efectivo de mejoramiento, y que la fuente de germoplasma silvestre de S. phureja y S. chacoense es deseable para mejorar los caracteres de procesamiento de las variedades locales.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Amrein, T.M., S. Bachmann, A. Noti, M. Biedermann, M.F. Barbosa, S. Biedermann-Brem, K. Grob, A. Keiser, P. Realini, F. Escher, and R. Amadó. 2003. Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems. Journal of Agricultural and Food Chemistry 51: 5556–5560.
Bhaskar, P.B., L. Wu, J.S. Busse, B.R. Whitty, A.J. Hamernik, S.H. Jansky, C.R. Buell, P.C. Bethke, and J. Jiang. 2010. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiology 154: 939–948.
Blenkinsop, R.W., L.J. Copp, R.Y. Yada, and A.G. Marangoni. 2002. Changes in compositional parameters of tubers of potato (Solanum tuberosum) during low-temperature storage and their relationship to chip processing quality. Journal of Agricultural and Food Chemistry 50: 4545–4553.
Blenkinsop, R., R. Yada, and A. Marangoni. 2004. Metabolic control of low-temperature sweetening in potato tubers during postharvest storage. Horticultural Reviews 30: 317–354.
CIAA. 2005. A “toolbox” for the reduction of acrylamide in fried potato crisps. Retrieved 10 October 2012, from http://ec.europa.eu/food/food/chemicalsafety/contaminants/acrylamide/crisps-EN-final.pdf.
Dale, M.F.B., and J.E. Bradshaw. 2003. Progress in improving processing attributes in potato. Trends in Plant Science 8: 310–312.
De Wilde, T., B. De Meulenaer, F. Mestdagh, Y. Govaert, S. Vandeburie, W. Ooghe, S. Fraselle, K. Demeulemeester, C. Van Peteghem, A. Calus, J.M. Degroodt, and R. Verhe. 2005. Influence of storage practices on acrylamide formation during potato frying. Journal of Agricultural and Food Chemistry 53: 6550–6557.
FAO. 2010. Statistical database. Retrieved from http://faostat.fao.org.
FDA 2003. Centers for Disease Control and Prevention. Exploratory data on acrylamide in foods. http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/ChemicalContaminants/Acrylamide/ucm053537.htm
Hamernik, A.J., R.E. Hanneman, and S.H. Jansky. 2009. Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Science 49: 529–542.
Jansky, S.H., L.P. Jin, K.Y. Xie, C.H. Xie, and D.M. Spooner. 2009. Potato production and breeding in China. Potato Research 52: 57–65.
Lee, Y.P., Takahashi, et al. 1966. An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical Biochemistry 14(1): 71–77.
Malone, J.G., V. Mittova, R.G. Ratcliffe, and N.J. Kruger. 2006. The response of carbohydrate metabolism in potato tubers to low temperature. Plant & Cell Physiology 47: 1309–1322.
Matsuura-Endo, C., A. Kobayashi, T. Noda, S. Takigawa, H. Yamauchi, and M. Mori. 2004. Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. Journal of Plant Research 117: 131–137.
McCann, L.C., P.C. Bethke, and P.W. Simon. 2010. Extensive variation in fried chip color and tuber composition in cold-stored tubers of wild potato (solanum) germplasm. Journal of Agricultural and Food Chemistry 58: 2368–2376.
Mottram, D.S., B.L. Wedzicha, and A.T. Dodson. 2002. Acrylamide is formed in the Maillard reaction. Nature 419: 448–449.
Muttucumaru, N., J. Elmore, T. Curtis, D. Mottram, M. Parry, and N. Halford. 2008. Reducing acrylamide precursors in raw materials derived from wheat and potato. Journal of Agricultural and Food Chemistry 56: 6167–6172.
Navrátil, O., L. Fischer, J. Čmejlová, M. Linhart, and J. Vacek. 2007. Decreased amount of reducing sugars in transgenic potato tubers and its influence on yield characteristics. Biologia Plantarum 51: 56–60.
Nunziata, A., V. Ruggieri, N. Greco, L. Frusciante, and A. Barone. 2010. Genetic diversity within wild potato species (Solanum spp.) revealed by AFLP and SCAR markers. American Journal of Plant Sciences 1: 95–103.
Ohara-Takada, A., C. Matsuura-Endo, et al. 2005. Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Bioscience, Biotechnology, and Biochemistry 69: 1232–1238.
Pedreschi, F., K. Kaack, and K. Granby. 2004. Reduction of acrylamide formation in potato slices during frying. LWT- Food Science and Technology 37: 679–685.
Priou, S., C. Salas, F. De Mendiburu, P. Aley, and L. Gutarra. 2001. Assessment of latent infection frequency in progeny tubers of advanced potato clones resistant to bacterial wilt: a new selection criterion. Biomedical and Life Sciences 44: 359–373.
Serpen, A., and V. Gokmen. 2007. Modeling of acrylamide formation and browning ratio in potato chips by artificial neural network. Molecular Nutrition & Food Research 51: 383–389.
Smith, A.M., S.C. Zeeman, and S.M. Smith. 2005. Starch degradation. Annual Review of Plant Biology 56: 73–98.
Sowokinos, J.R. 2001. Biochemical and molecular control of cold-induced sweetening in potatoes. American Journal of Potato Research 78: 221–236.
Stadler, R., I. Blank, N. Varga, F. Robert, J. Hau, P. Guy, M. Robert, and S. Riediker. 2002. Acrylamide from Maillard reaction products. Nature 419: 449–450.
Sturm, A. 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology 121: 1–8.
Xie, Z. 2010. The effects of root restriction on grape berry development, the structure of source and sink organs, and their conducting tissue of grape vines. School of agriculture and biology. China, Shanghai Jiaotong University. Doctor’s degree.
Yang, J., J. Zhang, Z. Wang, Q. Zhu, and L. Liu. 2004. Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta 220: 331–343.
Acknowledgments
This work was supported by Program for National Natural Science Foundation (30960205, 31171477), New Century Excellent Talents in University (NCET-07-0214), Gansu Province Program for Research and Exploitation of Agriculture Biotechnology (GNSW-2008-07), Gansu Provincial Key Laboratory of Aridland Crop Science (GSCS-02), Gansu Educational Science Foundation (0602-07).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Zhao, Q., Zhao, B., Zhang, Q. et al. Screening for Chip-Processing Potato Line from Introgression of Wild Species’ Germplasms with Post-Harvest Storage and Chip Qualities. Am. J. Potato Res. 90, 425–439 (2013). https://doi.org/10.1007/s12230-013-9316-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12230-013-9316-1