Skip to main content

Advertisement

Log in

Exchangeable Soil Calcium May Not Reliably Predict In-season Calcium Requirements for Enhancing Potato Tuber Calcium Concentration

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Previous research has provided evidence that Ca is transported to the tuber along with water via the roots on stolons and tubers. Several studies have documented that in-season Ca application can increase tuber Ca concentration and reduce storage rot and internal defects such as hollow heart, brown center, and internal brown spot. The objective of the present study was to investigate the relationship between preplant soil test Ca levels and the tuber Ca concentration. Recommendation for Ca application in potato production guides are not necessarily geared towards tubers unique nutritional needs. In general, for potato production, Ca applications are recommended only if pre-plant soil exchangeable Ca is below 300 mg kg−1. Studies were conducted in two soil types, namely loamy sand (Hancock location) and silt loam (Antigo location). The pre-plant soil Ca for the loamy sand tested at 285–563 mg kg−1 and the silt loam tested at 530–1,340 mg kg−1 of exchangeable Ca. Five cultivars were grown with or without in-season Ca applications of 168 kg ha−1. At Hancock, 30 separate trials were conducted between the years 1999–2006, whereas at Antigo, 15 separate trials were conducted between the years 1995–1998. The tuber Ca concentration increased in 38 of the 45 total trials carried out in both locations. This increase in tuber Ca concentration varied among cultivars and seasons but had no relationship with soil Ca. This increase in tuber CA concentration occurred even when pre-season exchangeable Ca tested at over 1,000 mg kg−1. These results suggest that testing for exchangeable Ca in these soils is not a good (or reliable) predictor of tuber Ca needs.

Resumen

Investigaciones recientes han proporcionado evidencias que calcio es transportado a los tubérculos junto con el agua mediante las raíces de los estolones y de los tubérculos. Varios estudios han documentado que aplicando calcio durante el período de crecimiento puede incrementar la concentración de calcio en el tubérculo y reducir los problemas de pudrición durante el almacenamiento, así como los defectos internos conocidos como corazón hueco (hollow heart), centro pardo (brown center) y mancha parda (internal brown spot). El objetivo del presente estudio fue investigar la relación entre los niveles de calcio del suelo antes de plantar y la concentración de calcio en el tubérculo. Las recomendaciones para la aplicación de calcio, encontradas en las guías de producción de papa, no son necesariamente hechas de acuerdo a las necesidades nutricionales de los tubérculos. En general, para la producción de papa, la aplicación de calcio es recomendable solamente si el calcio con naturaleza química intercambiable presente en el suelo antes de plantar, es menor de 300 mg kg−1. Se llevaron a cabo estudios en dos tipos de suelo, arenoso (Hancock) y sedimentario (Antigo). El análisis del suelo arenoso antes de plantar arrojó un valor de 285 mg kg−1 y, el suelo sedimentario de 530–1,340 mg kg−1 de calcio intercambiable. Cinco variedades fueron cultivadas con y sin la aplicación de 168 kg ha−1 de calcio durante su período de crecimiento. En Hancock, 30 ensayos diferentes se realizaron entre los años 1999–2006, mientras que en Antigo, 15 ensayos diferentes se realizaron entre los años 1995–1998. La concentración de calcio del tubérculo se incrementó en 38 de los 45 ensayos que se llevaron a cabo en los dos sitios. Este incremento en el contenido de calcio en el tubérculo fue variable entre los cultivares y los años, pero no tuvo ninguna relación con el contenido de calcio del suelo. Este incremento ocurrió aún cuando el análisis del contenido de calcio intercambiable, en el suelo antes de plantar, arrojó valores por encima de los 1,000 mg kg−1. Estos resultados sugieren que los niveles de calcio intercambiable del suelo no son un buen indicador de las necesidades de calcio del tubérculo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ca:

Calcium

References

  • Bangerth, F. 1979. Ca-related disorders of plants. Annual Review of Phytopathology 17: 97–122.

    Article  CAS  Google Scholar 

  • Busse, J.S., and J.P. Palta. 2006. Investigating the in vivo calcium transport path to developing potato tuber using 45Ca: A new concept in potato tuber calcium nutrition. Physiologia Plantarum 128: 313–323.

    Article  CAS  Google Scholar 

  • Cao, W., and T.W. Tibbitts. 1993. Study of various NH4 +/NO3 mixtures for enhancing growth of potatoes. Journal of Plant Nutrition 16: 1691–1704.

    PubMed  CAS  Google Scholar 

  • Clarkson, D.T. 1984. Calcium transport between tissue and its distribution in the plant. Plant, Cell & Environment 7: 449–456.

    Article  CAS  Google Scholar 

  • Clarkson, D.T., and J.B. Hanson. 1980. The mineral nutrition of higher plants. Annual Review of Plant Physiology 31: 239–298.

    Article  CAS  Google Scholar 

  • Clough, G.H. 1994. Potato yield, mineral concentration, and quality after calcium fertilization. Journal of the American Society for Horticultural Science 119: 175–179.

    CAS  Google Scholar 

  • Collier, G.F., D.C.E. Wurr, and V.C. Huntington. 1980. The susceptibility of potato varieties to internal rust spot in the potato. Journal of Agricultural Science, Cambridge 94: 407–410.

    Article  Google Scholar 

  • Gomez-Lepe, B.E., O.Y. Lee-Stadelmann, J.P. Palta, and E.J. Stadelmann. 1979. Effects of octylguanidine on cell permeability and other protoplasmic properties of Allium cepa epidermal cells. Plant Physiology 64: 131–138.

    PubMed  CAS  Google Scholar 

  • Hanson, J.B. 1984. The functions of calcium in plant nutrition. In Advances in Plant Nutrition, eds. P.B. Tinker, and A. Lauchli, 149–208. New York, NY, USA: Praeger.

    Google Scholar 

  • Harris, P. 1992. The potato crop, the scientific basis for improvement. 78–113. London, UK: Chapman and Hall.

    Google Scholar 

  • Hirschi, K.D. 2004. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology 136: 2438–2442.

    Article  PubMed  CAS  Google Scholar 

  • Hole, F.D. 1976. Soils of Wisconsin. 129–164. Madison, WI, USA: University of Wisconsin Press.

    Google Scholar 

  • Karlsson, B.H., J.P. Palta, and P.M. Crump. 2006. Enhancing tuber calcium concentration may reduce incidence of blackspot bruise injury in potatoes. HortScience 41: 1213–1221.

    CAS  Google Scholar 

  • Kleinhenz, M.D., C.C. Gunter, and J.P. Palta. 1999. Impact of source and timing of calcium and nitrogen applications on ‘Atlantic’ potato tuber calcium concentrations and internal quality. Journal of the American Society for Horticultural Science 124: 498–506.

    Google Scholar 

  • Kratzke, M.G., and J.P. Palta. 1985. Evidence for the existence of functional roots on potato tubers and stolons: Significance in water transport to the tuber. American Potato Journal 62: 227–236.

    Article  Google Scholar 

  • Kratzke, M.G., and J.P. Palta. 1986. Calcium accumulation in potato tubers: Role of the basal roots. HortScience 21: 1022–1024.

    CAS  Google Scholar 

  • Lang, N.S., R.G. Stevens, R.E. Thornton, W.L. Pan, and S. Victory. 1999. Nutrient management guide: Central Washington irrigated potatoes, 14. Washington: Washington State University, Cooperative Extension, EB1871.

    Google Scholar 

  • Legge, R.L., E. Thompson, J.E. Baker, and M. Lieberman. 1982. The effect of calcium on the fluidity and phase properties of microsomal membranes isolated from postclimacteric Golden Delicious apples. Plant and Cell Physiology 23: 161–169.

    CAS  Google Scholar 

  • Levitt, J. 1942. A histological study of hollow heart potatoes. American Potato Journal 19: 134–143.

    Article  CAS  Google Scholar 

  • Locascio, S.J., J.A. Bartz, and D.P. Weingartner. 1992. Calcium and potassium fertilization of potatoes grown in north Florida. I. Effects on potato yield and tissue Ca and K concentrations. American Potato Journal 69: 95–104.

    Article  CAS  Google Scholar 

  • Marschner, H. 1995. Mineral nutrition of higher plants. 263–299. London, UK: Academic.

    Google Scholar 

  • Ozgen, S., B.H. Karlsson, and J.P. Palta. 2006. Response of potatoes (cv Russet Burbank) to supplemental calcium applications under field conditions: Tuber calcium, yield, and incidence of internal brown spot. American Journal of Potato Research 83: 195–204.

    CAS  Google Scholar 

  • Palta, J.P. 1996. Role of calcium in plant responses to stresses: Linking basic research to the solution of practical problems. Proceedings of Colloquium: Recent advances in plant responses to stress: bridging the gap between science and technology. HortSci 31: 51–57.

    Google Scholar 

  • Palta, J.P., and O.Y. Lee-Stadelmann. 1983. Vacuolated plant cells as an ideal osmometer: Reversibility and limits of plasmolysis, and an estimation of protoplasm volume in control and water-stress-tolerant cells. Plant, Cell & Environment 6: 601–610.

    Google Scholar 

  • Pan, W.L., and L.K. Hiller. 1992. Growth and development of potato root types: Implications for placement and timing strategies in fertility management. Proceedings of the Washington State Potato Conference and Trade Fair, pp 105–111.

  • Simmons, K.E., and K.A. Kelling. 1987. Potato responses to calcium application in several soil types. American Potato Journal 64: 119–136.

    Article  Google Scholar 

  • Simmons, K.E., K.A. Kelling, R.P. Wolkowski, and A. Kelman. 1988. Effect of calcium source and application method on potato yield and cation composition. Agronomy Journal 80: 13–21.

    CAS  Google Scholar 

  • Stark, J.C., and D.T. Westermann. 2003. Nutrient management. In Potato Production Systems, eds. J.C. Stark, and S.L. Love, 115–135. Moscow, ID, USA: University of Idaho Agriculture Communications.

    Google Scholar 

  • White, P.J., and M.R. Broadley. 2003. Calcium in plants. Annals of Botany 92: 487–511.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the staff at the University of Wisconsin Hancock Agricultural research station for their cooperation. Also John T. Schroeder for the generous use of his farm fields in Antigo, WI.

Disclaimer

Reported use of brand name products does not imply an endorsement by North Carolina State University or the University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwan P. Palta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunter, C.C., Palta, J.P. Exchangeable Soil Calcium May Not Reliably Predict In-season Calcium Requirements for Enhancing Potato Tuber Calcium Concentration. Am. J. Pot Res 85, 324–331 (2008). https://doi.org/10.1007/s12230-008-9025-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-008-9025-3

Keywords

Navigation