Skip to main content
Log in

Clonal vs leaf-height-seed (LHS) traits: which are filtered more strongly across habitats?

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Plant functional traits are now frequently used instead of species identity to identify how plant species co-exist in assemblages. One notion is that species inhabiting the same environment have more characteristics in common than species from different habitats, leading to different prevailing dominant traits along environmental gradients, and also to a lesser diversity of traits in habitats that impose a stronger filter on these traits. Though such patterns have been demonstrated for different environmental drivers and different traits, studies using easily available traits connected to above ground processes (i.e. traits of the leaf-height-seed, or LHS, strategy scheme) are largely overrepresented in these analyses. Here we combined data on clonal and bud bank traits, representing the ability to reproduce and spread vegetatively, with LHS trait data and examined how these traits varied in relation to the vegetational composition of 29 Central-European habitat types. Our analysis focused on determining whether clonal/bud bank or LHS traits play an important role for environmental filtering along gradients approximated by Ellenberg indicator values (EIV) across these habitats. Our results show that clonal and bud bank traits are at least as – if not more – important for the differentiation of the 29 habitat types. Overall, diversity and dominance of clonal and bud bank traits was more strongly correlated with gradients of light availability, temperature, moisture, soil reaction, and nutrient availability across these habitats than it was the case for traits of the leaf-height-seed scheme. Our results call for a stronger integration of belowground traits into the functional traits approach in plant ecology and for an extension of efforts to collect such data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Botta-Dukát Z (2005) Rao's quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and mulitmodel inferences – a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnicket N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087

    Article  Google Scholar 

  • Callaghan TV, Carlsson BÅ, Jónsdóttir IS, Svensson BM, Jonasson S (1992) Clonal plants and environmental change: introduction to the proceedings and summary. Oikos 63:341–347

    Article  Google Scholar 

  • Catorci A, Ottaviani G, Ballelli S, Cesaretti S (2011) Functional differentiation of Central Apennine grasslands under mowing and grazing disturbance regimes. Polish J Ecol 59:115–128

    Google Scholar 

  • Catorci A, Vitanzi A, Tardella FM, Hršak V (2012) Trait variations along a regenerative chronosequence in the herb layer of submediterranean forests. Acta Oecol 43:29–41

    Article  Google Scholar 

  • Chytrý M, Rafajová M (2003) Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75:1–15

  • Chytrý M, Rafajovyá M (2003) Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77:339–354

  • Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471

    Article  PubMed  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin IFS (2001) The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93: 274–285

    Article  Google Scholar 

  • Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freezing. Amer J Bot 86:1367–1372

    Article  CAS  Google Scholar 

  • de Bello F, Doležal J, Ricotta C, Klimešová J (2011) Plant clonal traits, coexistence and turnover in East Ladakh, Trans-Himalaya. Preslia 83:315–327

  • de Bello F, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, Thuiller W (2013a) Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36:393–402

    Article  Google Scholar 

  • de Bello F, Vandewalle M, Reitalu T, Lepš J, Prentice HC, Lavorel S, Sykes MT (2013b) Evidence for scale-and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. J Ecol 101:1237–1244

    Article  Google Scholar 

  • Dias ATC, Berg MP, de Bello F, Oosten AR, Bílá K, Moretti M (2013) An experimental framework to identify community functional components driving ecosystem processes and services delivery. J Ecol 101:29–37

    Article  Google Scholar 

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:2

    Google Scholar 

  • Eriksson O (1989) Seedling dynamics and life histories in clonal plants. Oikos 55:231–238

    Article  Google Scholar 

  • Exner A, Willner W, Grabherr G (2002) Picea abies and Abies alba forests of the Austrian Alps: numerical classification and ordination. Folia Geobot 37:383–402

    Article  Google Scholar 

  • Fujita Y, Venterink HO, van Bodegom PM, Douma JC, Heil GW, Hölzel N, Jablonska E, Kotowski W, Okruszko T, Pawlikowski P, de Ruiter PC, Wassen MJ (2014) Low investment in sexual reproduction threatens plants adapted to phosphorus limitation. Nature 505:82–86

    Article  PubMed  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Tousaint JP (2004) Plant functional ecology markers capture ecosystems properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš K, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities – approaches, patterns and prospects. Biol Rev 87:111–127

    Article  PubMed  Google Scholar 

  • Grime JP (2006) Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons, Toronto

    Google Scholar 

  • Halassy M, Campetella G, Canullo R, Mucina L (2005) Patterns of functional clonal traits and clonal growth modes in contrasting grasslands in the central Apennines, Italy. J Veg Sci 16:29–36

    Article  Google Scholar 

  • Herben T, Nováková Z, Klimešová J (2013) Comparing functional diversity in traits and demography of Central European vegetation. J Veg Sci 24:910–920

    Article  Google Scholar 

  • Herben T, Šerá B, Klimešová J (2015) Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos 124:469–476

    Article  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Klimeš L, Klimešová J, Hendriks RJJ, van Groenendael JM (1997) Clonal plant architecture: a comparative analysis of form and function. In de Kroon H & van Groenendael JM (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, NL, pp 1–29

    Google Scholar 

  • Klimeš L, Klimešová J (1999) Root sprouting in Rumex acetosella under different nutrient levels. Pl Ecol 141:33–39

    Article  Google Scholar 

  • Klimešová J, Klimeš L (2007) Bud banks and their role in vegetative regeneration – a literature review and proposal for simple classification and assessment. Perspect Pl Ecol 8:115–129

    Article  Google Scholar 

  • Klimešová J, de Bello F (2009) CLO-PLA: the database of clonal and bud bank traits of Central European flora. J Veg Sci 20:511–516

    Article  Google Scholar 

  • Klimešová J, Doležal J, Dvorský M, de Bello F, Klimeš L (2011) Clonal growth forms in eastern Ladakh, western Himalayas: classification and habitat preferences. Folia Geobot 46:191–217

    Article  Google Scholar 

  • Klimešová J, Doležal J, Prach K, Košnar J (2012) Clonal growth forms in Arctic plants and their habitat preferences: a study from Petuniabukta, Spitsbergen. Polish Polar Res 33:421–442

    Google Scholar 

  • Klimešová J, Herben T (2015) Clonal and bud bank traits: patterns across temperate plant communities. J Veg Sci 26:243–253

    Article  Google Scholar 

  • Klimešová J, Tackenberg O, Herben T (2016) Herbs are different: clonal and bud bank traits can matter more than leaf–height–seed traits. New Phytol 210:13–17

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12. Available at https://cran.r-project.org/web/packages/FD

  • Laughlin DC (2014) The intrinsic dimensionality of plant traits and its relevance to community assembly. J Ecol 102:186–193

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Liu F, Liu J, Dong M (2016) Ecological consequences of clonal integration in plants. Frontiers Pl Sci 7: 770

    Google Scholar 

  • MacArthur RH, Levins R (1967) The limiting similarity, convergence and divergence of coexisting species. Amer Naturalist 101:377–385

    Article  Google Scholar 

  • Mason NWH, de Bello F, Mouillot D, Pavoine S, Dray S (2013) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J Veg Sci 24:794–806

    Article  Google Scholar 

  • Mudrák O, Janeček S, Götzenberger L, de Bello F (2015) Fine-scale coexistence patterns along a productivity gradient in wet meadows: shifts from trait convergence to divergence. Ecography 39: 338–348

    Article  Google Scholar 

  • Mundry R, Nunn CL (2009) Stepwise model fitting and statistical inference: turning noise into signal pollution. Amer Naturalist 173:119–123.

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Austral J Bot 61:167–234

    Article  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at www.R-project.org

    Google Scholar 

  • Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181–188

    Article  PubMed  Google Scholar 

  • Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244

    Article  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  • Schimper AFW (1898) Pflanzengeographie auf physiologischer Grundlage. G. Fisher, Jena

    Google Scholar 

  • Tölgyesi C, Bátori Z, Erdős L (2014) Using statistical tests on relative ecological indicator values to compare vegetation units – different approaches and weighting methods. Ecol Indicators 36:441–446

  • van Groenendael JM, Klimeš L, Klimešová J, Hendriks RJJ (1996) Comparative ecology of clonal plants. Philos Trans, Ser B 351:1331–1339

    Article  Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Quart Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  • Wellstein C, Kuss P (2011) Diversity and frequency of clonal traits along natural and land-use gradients in grasslands of the Swiss Alps. Folia Geobot 46:255–270

    Article  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Pl & Soil 199:213–227

    Article  CAS  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Rev Ecol Syst 2002:125–159

    Article  Google Scholar 

  • Wildi O (2016) Why mean indicator values are not biased. J Veg Sci 27:40–49

    Article  Google Scholar 

  • Willson MF, Traveset A (2000) The ecology of seed dispersal. In Fenner M (2000) Seeds: the ecology of regeneration in plant communities (2 nd Edition). CABI Publishing. School of Biological Sciences. University of Southampton, UK, 85–110 pp

  • Wilson PJ, Thompson KEN, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162

    Article  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby, M (2005) Modulation of leaf economic traits and trait relationships by climate. Global Ecol Biogeogr 14:411–421

  • Ye D, Hu Y, Song M, Pan X, Xie X, Liu G, Ye X, Dong M (2014) Clonality-climate relationships along latitudinal gradient across China: adaptation of clonality to environments. PLOS ONE 9:e94009

  • Zelený D, Schaffers AP (2012) Too good to be true: pitfalls of using Ellenberg indicator values in vegetation analyses. J Veg Sci 23:419–431

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jan Lepš, Carlos P. Carmona and two reviewers for their helpful comments on the manuscript. This research was supported by the Grant Agency of the Czech Republic (GACR16-15012S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Götzenberger.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 2332 kb)

ESM 2

(DOCX 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

E.-Vojtkó, A., Freitag, M., Bricca, A. et al. Clonal vs leaf-height-seed (LHS) traits: which are filtered more strongly across habitats?. Folia Geobot 52, 269–281 (2017). https://doi.org/10.1007/s12224-017-9292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-017-9292-1

Keywords

Navigation