Skip to main content

Advertisement

Log in

Evaluation of enterococci for potential probiotic utilization in dogs

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Some strains of the genus Enterococcus are effective probiotic bacteria if they meet safety and probiotic criteria. In our study, 17 canine enterococci previously selected from a group of 160 isolates based on safety criteria were screened for some functional properties relevant to their use as probiotics. The results of antimicrobial resistance testing showed sensitivity of eleven strains to EFSA recommended antimicrobials. In contrast, the most frequent resistance was observed for cefotaxim (15/17) and oxacillin (13/17). PCR detection of resistance genes (vanA, vanB, vanC, tetM, tetL, ermB, and mefA) revealed the presence of mefA gene in five Enterococcus faecium strains and vanA gene in one strain. The production of enzymes commonly associated with intestinal diseases was in general rare (β-glucosidase 2/17, α-chymotrypsin 1/17, N-acetyl-β-glucosaminidase 0/17, and β-glucuronidase 0/17). The measurement of strain survival rate (%) under the conditions simulating gastric (pH 2.5) and bile juices (0.3% bile) showed considerable differences between strains (< 0.01 to 4.7% after 90 min for gastric juices, 48.0 to 254.0% after 180 min for bile). The concentration of produced l-lactic acid ranged between 83.1 to 119.3 mmol/L after 48 h cultivation depending on the strain. All strains fermented 16 out of 49 different carbohydrates (range from 17 to 23/49). Antimicrobial activity was recorded for two strains against some species of Listeria sp. and Enterococcus sp. Finally, two E. faecium candidates (IK25 and D7) were selected for testing in dogs, and hereafter they could possibly extend the currently limited range of beneficial bacteria of canine origin used as a dietary supplement for dogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arboleya S, Ruas-Madiedo P, Margolles A, Solís G, Salminen S, de Los Reyes-Gavilán CG, Gueimonde M (2011) Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int J Food Microbiol 149:28–36

    Article  CAS  PubMed  Google Scholar 

  • Aymerich T, Holo H, Havarstein LS, Hugas M, Garriga M, Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682

  • Baele M, Chiers K, Davriese LA, Smith HE, Wisselink HJ, Vaneechoutte M, Haesebrouck F (2001) The gram-positive tonsillar and nasal flora of piglets before and after weaning. J Appl Microbiol 91:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Bessède E, Angla-gre M, Delagarde Y, Sep Hieng S, Ménard A, Mégraud F (2011) Matrix-assisted laser-desorption/ionization biotyper: experience in the routine of a university hospital. Clin Microbiol Infect 17:533–538

    Article  PubMed  Google Scholar 

  • Biavasco F, Foglia G, Paoletti C, Zandri G, Magi G, Guaglianone E, Sundsfjord A, Pruzzo C, Donelli G, Facinelli B (2007) VanA-type enterococci from humans, animals, and food: species distribution, population structure, Tn1546 typing and location, and virulence determinants. Appl Environ Microbiol 73:3307–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billington EO, Phang SH, Gregson DB, Pitout JDD, Ross T, Church DL, Laupland KB, Parkins MD (2014) Incidence, risk factors, and outcomes for Enterococcus spp. blood stream infections: a population-based study. Int J Infect Dis 26:76–82

    Article  CAS  PubMed  Google Scholar 

  • CAROdog. Statistics. http://www.carodog.eu/statistics-on-cats-and-dogs/#world

  • Casaus P, Nilsen T, Cintas LM, Nes IF, Hernández PE, Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiol 143:2287–2294

    Article  CAS  Google Scholar 

  • Christensen HR, Frøkiaer H, Pestka JJ (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168:171–178

    Article  CAS  PubMed  Google Scholar 

  • Cintas LM, Casaus P, Håvarstein LS, Hernández PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cintas LM, Casaus P, Holo H, Hernández PE, Nes IF, Håverstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50 are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Preter V, Raemen H, Cloetens E, Houben E, Rutgeerts P, Verbeke K (2008) Effect of dietary intervention with different pre- and probiotics on intestinal bacterial enzyme activities. Eur J Clin Nutr 62:225–231

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst L, Foulquie Moreno MR, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origin. Int J Food Microbiol 84:299–318

    Article  CAS  PubMed  Google Scholar 

  • D'Ercole S, Petrelli D, Prenna M, Zampaloni C, Catania MR, Ripa S, Vitali LA (2005) Distribution of mef(A)-containing genetic elements in erythromycin-resistant isolates of Streptococcus pyogenes from Italy. Clin Microbiol Infect 11:927–930

    Article  CAS  PubMed  Google Scholar 

  • Dobson A, Cotter PD, Ross RP, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dressman JB (1986) Comparison of canine and human gastrointestinal physiology. Pharm Res 3:123–131

    Article  CAS  PubMed  Google Scholar 

  • Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:24–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • EFSA Panel on Additives and Products or Substances usen in Animal Feed (FEEDAP) (2012a) Guidance on the safety assessment of Enterococcus faecium in animal nutrition. EFSA J 10:2682

    Article  CAS  Google Scholar 

  • EFSA Panel on Additives and Products or Substances usen in Animal Feed (FEEDAP) (2012b) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740

    Google Scholar 

  • Global Industry Analysts Inc. (2011). Global market opening for lactic acid [WWW document]. http://www.prweb.com/releases/2011/1/prweb8043649.htm/

  • Grześkowiak Ł, Endo A, Beasley S, Salminen S (2015) Microbiota and probiotics in canine and feline welfare. Anaerobe 34:14–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Hummel AS, Hertel C, Holzapfel WH, Franz CM (2007) Antibiotic resistances of starter and probiotic strains of LAB. Appl Environ Microbiol 73:730–739

    Article  CAS  PubMed  Google Scholar 

  • Jain S (2017) A study on susceptibility pattern of nitrofurantoin in clinical isolates of Enterococcus. Natl J Integr Res Med 8:53–56

    Google Scholar 

  • Jensen LB, Frimodt-Moller N, Aarestrup FM (1999) Presence of erm gene classes in gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett 170:151–158

    Article  CAS  PubMed  Google Scholar 

  • Juers DH, Matthews BW, Huber RE (2012) LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci 21:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastner S, Perreten V, Bleuler H, Hugenschmidt G, Lacroix CH, Meile L (2006) Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst Appl Microbiol 29:145–155

    Article  CAS  PubMed  Google Scholar 

  • Kataoka Y, Umino Y, Ochi H, Harada K, Sawada S (2014) Antimicrobial susceptibility of enterococcal species isolated from antibiotic-treated dogs and cats. J Vet Med Sci 76:1399–1402

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubašová I, Strompfová V, Lauková A (2017) Safety assessment of commensal enterococci from dogs. Folia Microbiol 62:491–498

    Article  CAS  Google Scholar 

  • Kumar S, Pattanaik AK, Sharma S, Gupta R, Jadhav SE, Dutta N (2017) Comparative assessment of canine-origin Lactobacillus johnsonii CPN23 and dairy-origin Lactobacillus acidophillus NCDC 15 for nutrient digestibility, faecal fermentative metabolites and selected gut health indices in dogs. J Nutr Sci 6:e38

    Article  CAS  PubMed  Google Scholar 

  • Lebreton F, Willems RJL, Gilmore MS (2014) Enterococcal species: natural and man-made habitats. In: Gilmore MS, Clewell DB, Ike Y et al (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston

    Google Scholar 

  • Minelli EB, Beninin A (2008) Relationship between number of bacteria and their probiotic effects. Microb Ecol Health Dis 20:180–183

    Article  Google Scholar 

  • Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolym 55:50–61

    Article  CAS  Google Scholar 

  • Ness IF, Diep DB, Ike Y (2014) Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In: Gilmore, MS, Clewell, DB, Ike Y et al. (Eds.) Enterococci: from commensals to leading causes of drug resistant infection [internet]. Boston: Massachusetts Eye and Ear Infirmary

  • Nonaka L, Ikeno K, Suzuki S (2007) Distribution of tetracycline resistance gene, tet (M) in gram-positive and gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in Japan. Microbes Environ 22:355–364

    Article  Google Scholar 

  • Ossiprandi MC, Zerbini L (2015) Antimicrobial susceptibility of enterococcal species isolated from Italian dogs. In: Ossiprandi MC (ed.) Antimicrobial resistance - an open challenge, Ossiprandi, M.C. (Ed.), InTech, https://doi.org/10.5772/61778

  • Park YH, Cho KM, Kim HW, Kim C (2010) Method for producing lactic acid with high concentration and high yield using lactic acid bacteria. CJ Cheiljedang Corp. U.S., patent 7682814 B2

  • Ramsey M, Hartke A, Huycke M (2014) The Physiology and Metabolism of Enterococci. In: Gilmore MS, Clewell DB, Ike Y et al (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston

    Google Scholar 

  • Roberts MC (1994) Epidemiology of tetracycline resistance determinants. Trends Microbiol 2:353–357

    Article  CAS  PubMed  Google Scholar 

  • Schmitz S, Suchodolski J (2016) Understanding the canine intestinal microbiota and its modification by pro-, pre- and synbiotics – what is the evidence? Vet Med Sci 2:71–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Skalka B, Pillich J, Pospíšil L (1983) Further observation on Corynebacterium renale as an indicator organism in the detection of exfoliation-positive strains Staphylococcus aureus. Zentralbl Bakteriol Hyg A256:168–174

    Google Scholar 

  • Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso G, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knighet R (2013) Cohabiting family members share microbiota with one another and with their dogs. eLife 2:e00458

    Article  PubMed  PubMed Central  Google Scholar 

  • Stovcik V, Javorsky P, Pristas P (2008) Antibiotic resistance patterns and resistance genes in enterococci isolated from sheep gastrointestinal tract in Slovakia. Bull Vet Inst Pulawy 52:53–57

    Google Scholar 

  • Strompfová V, Lauková A, Ouwehand AC (2004) Lactobacilli and enterococci--potential probiotics for dogs. Folia Microbiol 49:203–207

    Article  Google Scholar 

  • Strompfová V, Lauková A, Simonová M, Marciňáková M (2008) Occurrence of the structural enterocin A, P, B, L50B genes in enterococci of different origin. Vet Microbiol 132:293–301

    Article  CAS  PubMed  Google Scholar 

  • Subramanian MR, Talluri S, Christopher LP (2015) Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microb Biotechnol 8:221–229

    Article  CAS  PubMed  Google Scholar 

  • The European Committee on Antimicrobial Susceptibility Testing (2017) Breakpoint tables for interpretation of MICs and zone diameters. Version 7.0. http://www.eucast.org

  • Weese JS, Anderson EC (2002) Preliminary evaluation of Lactobacillus rhamnosus strain GG, a potential probiotic in dogs. Can Vet J 43:771–774

    PubMed  PubMed Central  Google Scholar 

  • Yun JS, Wee JY, Ryu HW (2003) Production of optically pure l(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzym Microb Technol 33:416–423

    Article  CAS  Google Scholar 

  • Zdolec N (2017) Fermented meat products: health aspects. CRC Press, Boca Raton 572 pages, ISBN 9781315352831

    Book  Google Scholar 

Download references

Funding

The study was funded by the Slovak Scientific Agency VEGA (no. 2/0012/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Strompfová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubašová, I., Lauková, A., Hamarová, Ľ. et al. Evaluation of enterococci for potential probiotic utilization in dogs. Folia Microbiol 64, 177–187 (2019). https://doi.org/10.1007/s12223-018-0640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-018-0640-1

Navigation