Skip to main content
Log in

Effect of genomic rearrangement on heavy metal tolerance in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A derivative of Azospirillum brasilense Sp245, Sp245.5, which spontaneously lost 85 and 120 MDa replicons upon the formation of a new megaplasmid, has been shown to produce a novel lipopolysaccharide and to lose Calcofluor-binding polysaccharides. As compared to Sp245, the derivative displays notably increased heavy metal tolerance. The phenotypes of Sp245 and Sp245.5 are characterized by the following minimal inhibitory concentrations (MICs) of heavy metals: 0.5 and 0.9 μmol l−1 of Ag+, 0.4 and 0.7 mmol l−1 of Co2+, 0.9 and 4.7 mmol l−1 of Cu2+, and 3.1 and 11.5 mmol l−1 of Zn2+, respectively. In Sp245, in the presence of a nonlethal concentration (0.625 μmol l−1) of the efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP), the MIC of cobalt, copper, and zinc drop 1.3- to 1.6-fold, but the low tolerance to silver is unaffected. In Sp245.5, CCCP does not affect cobalt tolerance, suppresses tolerance to copper and silver to the wild-type levels, and causes a 1.4-fold decrease in resistance to zinc. Therefore, significant elevation of heavy metal tolerance in Sp245.5 seems caused by the induction/overexpression of the proton-dependent efflux of certain metal ions. The novel cell surface and other unknown factors could also be responsible for the increased tolerance of A. brasilense Sp245.5 to heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CCCP:

Carbonyl cyanide m-chlorophenylhydrazone

CDF:

Cation diffusion facilitator(s)

LPS:

Lipopolysaccharide(s)

MIC:

Minimal inhibitory concentration(s)

MSM:

Malate–salt medium

OPS:

O-specific polysaccharide(s)

ORF:

Open-reading frame(s)

P:

Primer pair(s)

PCR:

Polymerase chain reaction(s)

p85:

An 85-MDa plasmid of A. brasilense Sp245

p120:

A 120-MDa plasmid of A. brasilense Sp245

RND:

Resistance–nodulation–cell division

References

  • Baldani VLD, Baldani JI, Döbereiner J (1983) Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 29:924–929. doi:10.1139/m83-148

    Article  Google Scholar 

  • Fedonenko YP, Zatonsky GV, Konnova SA, Zdorovenko EL, Ignatov VV (2002) Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245. Carbohydr Res 337:869–872. doi:10.1016/S0008-6215(02)00061-7

    Article  PubMed  CAS  Google Scholar 

  • Fedonenko YP, Katsy EI, Petrova LP, Boyko AS, Zdorovenko EL, Kachala VV, Shashkov AS, Knirel YA (2010) The structure of the O-specific polysaccharide from a mutant of nitrogen-fixing rhizobacterium Azospirillum brasilense Sp245 with an altered plasmid content. Russ J Bioorg Chem 36:219–223. doi:10.1134/S1068162010020111

    Article  CAS  Google Scholar 

  • Katsy EI (2011) Plasmid plasticity in the plant-associated bacteria of the genus Azospirillum. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 139–157. doi:10.1007/978-3-642-20332-9_7

    Chapter  Google Scholar 

  • Katsy EI, Prilipov AG (2009) Mobile elements of an Azospirillum brasilense Sp245 85-MDa plasmid involved in replicon fusions. Plasmid 62:22–29. doi:10.1016/j.plasmid.2009.02.003

    Article  PubMed  CAS  Google Scholar 

  • Katsy EI, Borisov IV, Petrova LP, Matora LY (2002) The use of fragments of the 85- and 120-MDa plasmids of Azospirillum brasilense Sp245 to study the plasmid rearrangement in this bacterium and to search for homologous sequences in plasmids of Azospirillum brasilense Sp7. Russ J Genet 38:124–131. doi:10.1023/A:1014373725254

    Article  CAS  Google Scholar 

  • Katsy EI, Petrova LP, Kulibyakina OV, Prilipov AG (2010) Analysis of Azospirillum brasilense plasmid loci coding for (lipo)polysaccharides synthesis enzymes. Microbiology 79:216–222. doi:10.1134/S002626171002013X

    Article  CAS  Google Scholar 

  • Katzy EI, Matora LY, Serebrennikova OB, Scheludko AV (1998) Involvement of a 120-MDa plasmid of Azospirillum brasilense Sp245 in the production of lipopolysaccharides. Plasmid 40:73–83. doi:10.1006/plas.1998.1353

    Article  PubMed  CAS  Google Scholar 

  • Khalsa-Moyers GK (2010) Use of proteomics tools to investigate protein expression in Azospirillum brasilense. Dissertation. University of Tennessee

  • Moreira FM, Lange A, Klauberg-Filho O, Siqueira JO, Nóbrega RS, Lima AS (2008) Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites. Ann Acad Bras Cienc 80:749–761. doi:10.1590/S0001-37652008000400014

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750. doi:10.1007/s002530051457

    Article  PubMed  CAS  Google Scholar 

  • Pagès J-M, Masi M, Barbe J (2005) Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 11:382–389. doi:10.1016/j.molmed.2005.06.006

    Article  PubMed  Google Scholar 

  • Petrova LP, Varshalomidze OE, Shelud’ko AV, Katsy EI (2010) Localization of denitrification genes in plasmid DNA of bacteria Azospirillum brasilense. Russ J Genet 46:798–804. doi:10.1134/S1022795410070045

    Article  Google Scholar 

  • Shelud’ko AV, Borisov IV, Krestinenko AV, Panasenko VI, Katsy EI (2006) Effect of Congo Red on the motility of the bacterium Azospirillum brasilense. Microbiology 75:48–54. doi:10.1134/S0026261706010103

    Article  Google Scholar 

  • Sheludko AV, Kulibyakina OV, Shirokov AA, Petrova LP, Matora LY, Katsy EI (2008) The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense. Microbiology 77:313–317. doi:10.1134/S0026261708030107

    Article  CAS  Google Scholar 

  • Tugarova AV, Kamnev AA, Antonyuk LP, Gardiner PHE (2006) Azospirillum brasilense resistance to some heavy metals. In: Alpoim MC, Morais PV, Santos MA, Cristóvão AJ, Centeno JA, Collery P (eds) Metal ions in biology and medicine, vol 9. John Libbey Eurotext, Paris, pp 242–245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena I. Katsy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelud’ko, A.V., Varshalomidze, O.E., Petrova, L.P. et al. Effect of genomic rearrangement on heavy metal tolerance in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Folia Microbiol 57, 5–10 (2012). https://doi.org/10.1007/s12223-011-0074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-011-0074-5

Keywords

Navigation