Skip to main content

Advertisement

Log in

Bacteria competing with the adhesion and biofilm formation by Staphylococcus aureus

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The activity of antagonistic substances produced by Pseudomonas aeruginosa and Lactobacillus acidophilus against the planktonic and sessile populations of Staphylococcus aureus strains was demonstrated. The strongest effects were caused by probiotic L. acidophilus strain — bacteriocin-like inhibitory substances (BLIS) positive. However, the S. aureus A3 growth, adhesion and biofilm formation was also limited by cell-free supernatant of L. acidophilus H-1 (BLIS negative). Moreover, competitive direct interactions were observed between staphylococci and the above bacteria, which influenced the formation of dualspecies aggregates on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATCC:

American Type Culture Collection

BLIS:

bacteriocin-like inhibitory substances

MHB:

Mueller-Hinton broth

MRS:

De Man-Rogosa-Sharp (broth)

MRSA:

methicillin-resistant S. aureus

NCTC:

National Culture Type Collection

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

TSB:

tryptic soya broth

E.c.:

Escherichia coli

P.a.:

Pseudomonas aeruginosa

E.f.:

Enterococcus faecalis

P.m.:

Proteus mirabilis

L.a.:

Lactobacillus acidophilus

References

  • Barequet I.S., Simon G.J., Safrin M., Ohman D.E., Kessler E.: Pseudomonas aeruginosa LasA protease in treatment of experimental staphylococcal keratitis. Antimicrob.Agents Chemother. 48, 1681–1687 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Cross M.L.: Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol.Med.Microbiol. 34, 245–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Foster J.S., Kolenbrander P.E.: Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl. Environ.Microbiol. 70, 4340–4348 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Goldsworthy M.J.H.: Gene expression of Pseudomonas aeruginosa and MRSA within a catheter-associated urinary tract infection biofilm model. Biosci.Horizons1, 28–37 (2008).

    Article  Google Scholar 

  • Hall-stoodley L., Costerton J.W., Stoodley P.: Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. 2, 95–106 (2004).

    Article  CAS  Google Scholar 

  • Hurdle J.G., Yendapally R., Sun D., Lee R.E.: Evaluation of analogs of reutericyclin as prospective candidates for the treatment of staphylococcal skin infections. Antimicrob.Agents Chemother. 53, 4028–4031 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson H.F., Lamont R.J.: Oral microbial communities in sickness and in health. Trends Microbiol. 13, 589–595 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann G.F., Sartorio R., Lee S.-H., Rogers C.J., Meijler M.M., Moss J.A., Clapham B., Brogan A.P., Dickerson T.J., Janda K.D.: Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. PNAS102, 309–314 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kimizuka R., Kato T., Ishihara K., Okuda K.: Mixed infections with Porphyromonas gingivalis and Treponema denticola cause excessive inflammatory responses in a mouse pneumonia model compared with monoinfections. Microbes Infect. 5, 1357–1362 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Koninkx J.F.J.G., Malago J.J.: The protective potency of probiotic bacteria and their microbial products against enteric infections — review. Folia Microbiol. 53, 189–194 (2006).

    Article  Google Scholar 

  • Mackie R.I., Sghir A., Gaskins H.R.: Developmental microbial ecology of the neonatal gastrointestinal tract. Am.J.Clin.Nutr. 69(Suppl.), 1035S–1045S (1999).

    CAS  PubMed  Google Scholar 

  • Mastropaolo M.D., Evans N.P., Byrnes M.K., Stevens A.M., Robertson J.L., Melville S.B.: Synergy in polymicrobial infections in a mouse model of type 2 diabetes. Infect.Immun. 73, 6055–6063 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Michel-Briand Y., Baysse C.: The pyocins of Pseudomonas aeruginosa. Biochimie84, 499–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Millsap K., Reid G., van der Mei H., Busscher H.J.: Displacement of Enterococcus faecalis from hydrophobic and hydrophilic substrata by Lactobacillus and Streptococcus spp. as studied in a parallel plate flow chamber. Appl.Environ.Microbiol. 60, 1867–1874 (1994).

    CAS  PubMed  Google Scholar 

  • Quazi S., Middleton B., Muharram S.H., Cockayne A., Hill P., O’shea P., Chhabra S.R., Camara M., Williams P.: N-Acylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus. Infect.Immun. 74, 910–919 (2006).

    Article  Google Scholar 

  • Reid G., Tieszer C., Lam D.: Influence of lactobacilli on the adhesion of Staphylococcus aureus and Candida albicans to fibers and epithelial cells. J.Ind.Microbiol. 15, 248–253 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Reid G., Howard J., Gan B.S.: Can bacterial interference prevent infection? Trends Microbiol. 9, 424–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Tait K., Sutherland I.W.: Antagonistic interactions amongst bacteriocin-producing enteric bacteria in dual species biofilms. J.Appl. Microbiol. 93, 345–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Vesterlund S., Karp M., Salminen S., Ouwehand A.C.: Staphylococus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology152, 1819–1826 (2006).

    Google Scholar 

  • Vlková E., Rada V., Šmechilová M., Killer J.: Auto-aggregation and co-aggregation ability in bifidobacteria and clostridia. Folia Microbiol. 53, 263–269 (2008).

    Article  Google Scholar 

  • Walencka E., Sadowska B., Różalska S., Hryniewicz W., Różalska B.: Staphylococcus aureus biofilm as a target for single or repeated doses of oxacillin, vancomycin, linezolid and/or lysostaphin. Folia Microbiol. 51, 381–386 (2006).

    Article  CAS  Google Scholar 

  • Walencka E., Różalska S., Sadowska B., Różalska B.: The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol. 53, 61–68 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Różalska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadowska, B., Walencka, E., Wieckowska-Szakiel, M. et al. Bacteria competing with the adhesion and biofilm formation by Staphylococcus aureus . Folia Microbiol 55, 497–501 (2010). https://doi.org/10.1007/s12223-010-0082-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0082-x

Keywords

Navigation