Skip to main content
Log in

The Effect of Flow Rate of a Short Sleeve Air Ventilation Garment on Torso Thermal Comfort in a Moderate Environment

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In recent years, air ventilation garments (AVG) have been reported effective to improve thermal comfort. In this study, an AVG incorporated with small fans was investigated on torso thermal comfort in moderate environment (Ta=25 °C, RH=50 %). Eight female subjects walked on the treadmill at a speed of 4 km·h−1 for 30 min and then rested for another 30 min. During the whole test protocol, the AVG was worn in three conditions of flow rates to examine which flow rate was the best choice to keep thermal comfort: fans off with no air ventilation (a controlled condition, CON), low flow rate (12 l/s, LOW) and high flow rate (20 l/s, HIGH). Results showed that HIGH made significantly lowered local skin temperature of the abdomen, scapula and the lower back (p<0.05). The mean torso skin temperature in CON, LOW and HIGH in the last 5 min in the exercising stage was 32.3, 30.2 and 29.2 °C, respectively and it was 32.1, 29.5 and 28.2 °C, respectively in the resting stage. HIGH significantly mitigated thermal sensation in the 40 and 50th min (p<0.05), whereas it produced cool and unpleasant thermal sensation in the resting stage. In the whole test scenario, LOW produced the best torso thermal comfort. The low flow rate of ventilation (12 l/s) should be recommend and used in such a moderate environment to maintain torso thermal comfort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Havenith, I. Holmér, and K. Parsons, Energy Build., 34, 581 (2002).

    Article  Google Scholar 

  2. C. Cao, K. Kuklane, P. O. Ostergren, and T. Kjellstrom, Int. J. Biometeorol., 63, 195 (2019).

    Article  Google Scholar 

  3. X. Xu, T. Endrusick, B. Laprise, W. Santee, and M. Kolka, Aviat Space. Envir. Md., 77, 644 (2006).

    Google Scholar 

  4. G. Bartkowiak, A. Dabrowska, and A. Marszalek, Appl. Ergon., 58, 182 (2017).

    Article  Google Scholar 

  5. C. Brade, B. Dawson, K. Wallman, and T. Polglaze, J. Athl Training., 45, 164 (2010).

    Article  Google Scholar 

  6. J. W. Choi, M. J. Kim, and J. Y. Lee, Ind. Health., 46, 620 (2008).

    Article  Google Scholar 

  7. C. Gao, K. Kuklane, F. Wang, and I. Holmér, Indoor Air, 22, 523 (2012).

    Article  CAS  Google Scholar 

  8. M. Zhao, C. Gao, F. Wang, K. Kuklane, I. Holmér, and J. Li, Text. Res. J., 83, 418 (2013).

    Article  CAS  Google Scholar 

  9. C. L. Butts, C. R. Smith, M. S. Ganio, and B. P. McDermott, Appl. Ergon., 59, 42 (2017).

    Article  Google Scholar 

  10. A. Hadid, R. Yanovich, T. Erlich, G. Khomenok, and D. S. Moran, Eur. J. Appl. Physiol., 104, 311 (2008).

    Article  CAS  Google Scholar 

  11. T. Chinevere, B. Cadarette, D. Goodman, B. Ely, S. Cheuvront, and M. Sawka, Eur. J. Appl. Physiol., 103, 307 (2008).

    Article  Google Scholar 

  12. X. Xu and J. Gonzalez, J. Appl. Physiol., 111, 3155 (2011).

    Article  Google Scholar 

  13. M. Zhao, C. Gao, F. Wang, K. Kuklane, I. Holmér, and J. Li, Int J. Ind. Ergon., 43, 232 (2013).

    Article  Google Scholar 

  14. M. Zhao, K. Kuklane, K. Lundgren, C. Gao, and F. Wang, Int. J. Occup. Saf. Ergon., 21, 457 (2015).

    Article  Google Scholar 

  15. M. Zhao, C. Gao, J. Li, and F. Wang, Fiber. Polym., 16, 1403 (2015).

    Article  Google Scholar 

  16. Y. Sun, W. J. Jasper, and E. A. DenHartog, J. Text. Sci. Eng., 5, 1000227 (2015).

    Google Scholar 

  17. Y. Sun and W. J. Jasper, Build. Environ., 93, 50 (2015).

    Article  Google Scholar 

  18. W. Yi, Y. Zhao, and A. P. C. Chan, Int. J. Ind. Ergon., 58, 62 (2017).

    Article  Google Scholar 

  19. Udayraj, Z. Li, Y. Ke, F. Wang, and B. Yang, Energy Build., 174, 439 (2018).

    Article  Google Scholar 

  20. B. Choudhary, Udayraj, F. Wang, Y. Ke, and J. Yang, Int. J. Heat Mass Transfer, 147, 118973 (2020).

    Article  Google Scholar 

  21. J. Yang, F. Wang, G. Song, R. Li, and U. Raj, Int. J. Occup. Saf. Ergon., doi: https://doi.org/10.1080/10803548.2020.1762316 (2020).

  22. W. Song, F. Wang, and F. Wei, Build. Environ., 100, 92 (2016).

    Article  Google Scholar 

  23. A. P. C. Chan, Y. Zhang, F. Wang, F. F. K. Wong, and D. W. M. Chan, J. Therm. Biol., 70, 21 (2017).

    Article  Google Scholar 

  24. Y. Zhao, W. Yi, A. P. C. Chan, F. F. K. Wong, and M. C. H. Yam, Ann. Work Expos. Heal., 61, 883 (2017).

    Article  Google Scholar 

  25. X. Wan, F. Wang, and Udayraj, Int. J. Heat Mass Transfer, 126, 636 (2018).

    Article  Google Scholar 

  26. ISO 9920, Ergonomics of the Thermal Environment-Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble, International Standards Organization, 2007.

  27. ISO 10551, Ergonomics of the Thermal Environment — Assessment of the Influence of the Thermal Environment Using Subjective Judgment Scales, International Standards Organization, 2002.

  28. L. Y. Lin, F. Wang, K. Kuklane, C. Gao, I. Holmér, and M. Zhao, Appl. Ergon., 44, 321 (2013).

    Article  Google Scholar 

  29. H. Yang, B. Gao, Y. Ju, and Y. Zhu, Energy Build., 198, 528 (2019).

    Article  Google Scholar 

  30. M. Itani, D. Ouahrani, N. Ghaddar, K. Ghali, and W. Chakroun, Build. Environ., 107, 29 (2016).

    Article  Google Scholar 

  31. M. Raccuglia, K. Pistak, S. G. Hodder, and G. Havenith, 6th International Conference of the Physiology and Pharmacology of Temperature Regulation, Ljubljana, Slovenia, 2016.

  32. M. Raccuglia, K. Pistak, C. Heyde, J. Qu, N. Mao, S. Hodder, and G. Havenith, Text. Res. J., 88, 2155 (2017).

    Article  Google Scholar 

  33. Y. Wang, Z. Lian, and L. Lan, Energy Build., 43, 2678 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the subjects for their participation in the study. This work was financially supported by the Natural Science Foundation of China (No. 51908349) and the open fund of Key Laboratory of Clothing Design and Technology (Donghua University), Ministry of Education, China (No. KLCDT2020-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengmeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Wang, F., Gao, C. et al. The Effect of Flow Rate of a Short Sleeve Air Ventilation Garment on Torso Thermal Comfort in a Moderate Environment. Fibers Polym 23, 546–553 (2022). https://doi.org/10.1007/s12221-021-0545-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0545-5

Keywords

Navigation