Skip to main content
Log in

Smart Stimuli-Responsive Polylactic Acid-Hydrogel Fibers Produced via Electrospinning

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this research we propose a new type of smart microfibers, distinguished by moisture management and proactive temperature and pH controlled release activity. Hydrogel with submicron-sized particles based on poly(N-isopropylacrylamide) (poly-NiPAAm) and chitosan (PNCS hydrogel) was incorporated into the structure of poly(lactic acid) (PLA) microfibers using the electrospinning technique. Composites with different PLA to PNCS hydrogel ratios were prepared, and the chemical and morphological properties of the samples were studied using SEM, FT-IR and Raman mapping. Additionally, the moisture management properties, which were provided by the temperature and pH-related phase change transition of the incorporated PNCS hydrogel, were studied by determining the temperature-related static contact angle, thin-layer wicking, moisture content and pH-related water uptake. The loading and release abilities of the incorporated PNCS hydrogel were studied using fluorescent microscopy. The increased concentration of the PNCS hydrogel in spinning solutions resulted in greater variations in fiber thickness and deterioration of the mechanical properties of the fibers; thus, the highest concentration of the PNCS hydrogel that could be incorporated within the fibers was found to be 20 % of the spinning mass. The composite sample showed temperature and pH responsiveness, a successful fluorescent-dye loading ability and its controlled release at predetermined conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. C. Koetting, J. T. Peters, S. D. Steichen, and N. A. Peppas, Mater. Sci. Eng. R Rep., 93, 1 (2015).

    Article  Google Scholar 

  2. D. Jocić, Tekstilec, 59, 107 (2016).

    Article  Google Scholar 

  3. B. Liu and J. Hu, Fibres Text. East. Eur., 13, 45 (2005).

    Google Scholar 

  4. E. A. Kamoun, E. S. Kenawy, and X. Chen, J. Adv. Res., 8, 217 (2017).

    Article  CAS  Google Scholar 

  5. S. K. Samal, M. Dash, P. Dubruel, and S. Van Vlierberghe in “Smart Polymers and Their Applications” (M. R. Aguilar De Armas and J. S. Román Eds.), pp.237–270, Cambridge: Woodhead Publishing, 2014.

  6. J. Qu, X. Zhao, P. X. Ma, and B. Guo, Acta Biomater, 58, 168 (2017).

    Article  CAS  Google Scholar 

  7. Z. Deng, T. Hu, Q. Lei, J. He, P. X. Ma, and B. Guo, ACS Appl. Mater. Interfaces, 11, 6796 (2019).

    Article  CAS  Google Scholar 

  8. A. Kulkarni, A. Tourrette, M. M. C. G. Warmoeskerken, and D. Jocić, Carbohydr. Polym., 82, 1306 (2010).

    Article  CAS  Google Scholar 

  9. A. Tourrette in “Surface Modification Systems for Creating Stimuli Responsiveness of Textiles” (D. Jocić Ed.), pp.77–92, Workshop Proceedings: 6th Framework Programe ADVANBIOTEX of the EU, 2010.

    Google Scholar 

  10. P. Križman Lavrič, M. M. C. G. Warmoeskerken, and D. Jocić, Cellulose, 19, 257 (2011).

    Article  Google Scholar 

  11. P. Križman Lavrič, B. Tomšič, B. Simončič, M. M. C. G. Warmoeskerken, and D. Jocić, Cellulose, 19, 273 (2012).

    Article  Google Scholar 

  12. B. Tomšič, P. Križman Lavrič, B. Simončič, B. Orel, and D. Jocić, J. Sol-Gel Sci. Technol., 61, 463 (2012).

    Article  Google Scholar 

  13. D. Štular, I. Jerman, I. Naglič, B. Simončič, and B. Tomšič, Carbohydr. Polym., 159, 161 (2017).

    Article  Google Scholar 

  14. D. Štular, J. Vasiljević, M. Čolović, M. Mihelčič, J. Medved, J. Kovač, I. Jerman, B. Simončič, and B. Tomšič, J. Sol-Gel Sci. Technol, 83, 19 (2017).

    Article  Google Scholar 

  15. A. S. Patil, A. P. Gadad, R. D. Hiremath, and S. D. Joshi, J. Polym. Res., 25, 77 (2018).

    Article  Google Scholar 

  16. D. Štular, B. Tomšič, I. Jerman, B. Simončič, M. Mihelčič, L. Noč, and I. German Ilić, Prog. Org. Coat., 124, 213 (2018).

    Article  Google Scholar 

  17. S. Jin, Z. Chen, B. Xin, T. Xi, and N. Meng, Fiber. Polym., 18, 1160 (2017).

    Article  CAS  Google Scholar 

  18. C. Huang and N. L. Thomas, Eur. Polym. J., 99, 464 (2018).

    Article  CAS  Google Scholar 

  19. T. Grothe, D. Wehlage, T. Böhm, A. Remche, and A. Ehrmann, Tekstilec, 60, 290 (2017).

    Article  Google Scholar 

  20. J. Li, W. Xu, D. Li, T. Liu, Y. S. Zhang, J. Ding, and X. Chen, ACS Nano, 12, 6685 (2018).

    Article  CAS  Google Scholar 

  21. J. Ding, J. Zhang, J. Li, D. Li, C. Xiao, H. Xiao, H. Yang, X. Zhuang, and X. Chen, Prog. Polym. Sci., 90, 1 (2019).

    Article  CAS  Google Scholar 

  22. D. Kehren, A. C. Molano Lopez, and A. Pich, Polymer, 55, 2153 (2014).

    Article  CAS  Google Scholar 

  23. A. Balaceanu, Y. Verkh, D. Kehren, W. Tillmann, and A. Pich, Z Phys. Chem., 228, 253 (2014).

    Article  CAS  Google Scholar 

  24. D. Kehren and A. Pich, Macromol. Mater. Eng., 298, 1282 (2013).

    Article  CAS  Google Scholar 

  25. J. E. Díaz, A. Barrero, M. Marquez, A. Fernandez-Nieves, and I. G. Loscertales, Macromol. Rapid. Comm., 31, 183 (2010).

    Google Scholar 

  26. P. Wilke, V. Coger, M. Nachev, S. Schachschal, N. Million, S. Barcikowski, B. Sures, K. Reimers, P. M. Vogt, and A. Pich, Polymer, 61, 163 (2015).

    Article  CAS  Google Scholar 

  27. C. F. Lee, C. J. Wen, and W. Y. Chiu, J. Polym. Sci. Pol. Chem., 41, 2053 (2003).

    Article  CAS  Google Scholar 

  28. C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, BMC Bioinformatics, 18, 26 (2017).

    Article  Google Scholar 

  29. E. Chibowski and F. González-Caballero, Langmuir, 9, 330 (1993).

    Article  CAS  Google Scholar 

  30. B. Simončič and V. Rozman, Colloid Surface A, 292, 236 (2007).

    Article  Google Scholar 

  31. D. H. Reneker and A. L. Yarin, Polymer, 49, 2387 (2008).

    Article  CAS  Google Scholar 

  32. G. Socrates, “Infrared and Raman Characteristic Group Frequencies”, John Wiley & Sons, New York, 2001.

    Google Scholar 

  33. Y. Tsuboi, M. Nishino, and N. Kitamura, Polym. J., 40, 367 (2008).

    Article  CAS  Google Scholar 

  34. D. Klinger and K. Landfester, Polymer, 53, 5209 (2012).

    Article  CAS  Google Scholar 

  35. S. L. Percival, S. McCarty, J. A. Hunt, and E. J. Woods, Wound. Repair. Regen., 22, 174 (2014).

    Article  Google Scholar 

  36. B. Simončič and B. Tomšič in “Textile Finishing: Recent Developments and Future Trends, (Adhesion and Adhesives)” (K. L. Mittal and T. Bahners Eds.), pp.3–50, Hoboken: Wiley; Beverly: Scrivener Publishing, 2017.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovenian Research Agency (Program P2-0213, Infrastructural Centre RIC UL-NTF, grant for the doctoral student, D.Š. and Program P2-0207 in ARRS grant J3-8201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigita Tomšič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Štular, D., Kruse, M., Župunski, V. et al. Smart Stimuli-Responsive Polylactic Acid-Hydrogel Fibers Produced via Electrospinning. Fibers Polym 20, 1857–1868 (2019). https://doi.org/10.1007/s12221-019-9157-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9157-8

Keywords

Navigation