Skip to main content
Log in

Effect of Basalt Fiber on the Strength Properties of Polymer Reinforced Sand

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper displays an experimental study of the effect of basalt fiber on the strength properties of polymer reinforced sand. Laboratory trials of unconfined compression test (UCS), direct shear test, and tensile test were conducted on the specimens treated with polymer and basalt fiber, and several factors including polymer content, fiber content and dry density of sand that will influence the strength behaviors are investigated in detail. Based on test results and scanning electron microscope (SEM) images, the reinforcement mechanism was analyzed. The results showed that the polymer content, basalt fiber content and dry density of sand had greatly improved the strength behaviors of reinforced specimens. The increase in polymer and fiber content had an active effect on strength characteristics, while the angle of internal decreased slightly. The strength properties were enhanced with the increase in dry density, and the effect of dry density on tensile strength is affected by fiber content. The presence of randomly distributed fibers has formed a spatial fiber-sand net in sand, and the additive of polymer solution formed membrane to enwrap sand particles and connect sand and fibers, thereby formed a stable structure in sand. These structures have increased the bonding and interlocking forces between sand and fibers, and decreased the void ratio of reinforced specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hejazi, M. Sheikhzadeh, M. Abtahi, and A. Zadhoush, Constr. Build. Mater., 30, 100 (2012).

    Article  Google Scholar 

  2. K. Kar, K. Pradhan, and A. Naik, Electron. J. Geotech. Eng., 17, 3861 (2012).

    Google Scholar 

  3. M. Kanchi, S. Neeraja, and L. Babu, Int. J. Geomech., 15, 06014016–1 (2015).

    Google Scholar 

  4. M. Hejazi, M. Sheikhzadeh, M. Abtahi, and A. Zadhoush, Fiber. Polym., 14, 277 (2013).

    Article  CAS  Google Scholar 

  5. Y. Wang, P. Guo, S. Shan, H. Yuan, and B. Yuan, Geotech. Geol. Eng., 34, 1079 (2016).

    Article  Google Scholar 

  6. S. Neeraja, G. Manjari, and L. Babu, Int. J. Geotech. Eng., 8, 328 (2014).

    Article  Google Scholar 

  7. H. Zhu, C. Zhang, C. Tang, B. Shi, and B. Wang, Geotex. Geomem., 42, 329 (2014).

    Article  Google Scholar 

  8. B. Ye, Z. Cheng, C. Liu, Y. Zhang, and P. Lu, Geosynth. Int., 24, 625 (2017).

    Article  Google Scholar 

  9. S. Rajeswari, R. Sarkar, N. Roy, and D. Bharti, Int. J. Geotech. Eng., 2017, 1 (2017).

    Article  Google Scholar 

  10. C. Tang, J. Li, D. Wang, and S. Bin, Geotex. Geomem., 44, 872 (2016).

    Article  Google Scholar 

  11. E. Orakoglu, J. Liu, and F. Niu, Soil. Dyn. Earthq. Eng., 101, 269 (2017).

    Article  Google Scholar 

  12. M. Li, H. He, and K. Senetakis, Geosynth. Int., 24, 480 (2017).

    Article  Google Scholar 

  13. S. Park, Int. J. Concr. Struct. Mater., 6, 231 (2012).

    Article  Google Scholar 

  14. S. Prasad and V. Ramana, Geotex. Geomem., 44, 406 (2016).

    Article  Google Scholar 

  15. S. Liang, M. Wang, L. Zhang, S. Zhou, and Y. Zhang, Mater Res. Innov., 19, S8–518 (2016).

    Google Scholar 

  16. J. Liu, X. Qi, D. Zhang, Q. Feng, Y. Wang, and D. P. Kanungo, Adv. Mater. Sci. Eng., Article ID 5240186, https://doi.org/10.1155/2017/5240186 (2017).

    Google Scholar 

  17. N. Latifi, S. Horpibulsuk, L. Meehan, Z. Majid, and M. Tahir, J. Mater. Civ. Eng., 29, 1 (2016).

    Google Scholar 

  18. N. Latifi, A. Marto, and A. Eisazadeh, Environ. Earth. Sci., 73, 1133 (2015).

    Article  CAS  Google Scholar 

  19. J. Liu, Y. Bai, Z. Song, Y. Lu, Q. Wei, and D. Kanungo, Polymers, 10, 287 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  20. S. Onyejekwe and S. Ghataora, B. Eng. Geol. Environ., 74, 651 (2015).

    Article  CAS  Google Scholar 

  21. M. Zhang, H. Guo, T. El–Korchi, G. Zhang, and M. Tao, Constr. Build. Mater., 47, 1468 (2013).

    Article  Google Scholar 

  22. B. Kogbara and A. Al–Tabbaa, Sci. Total Environ., 409, 2325 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Y. Bagheri, F. Ahmad, and A. Ismail, Mater. Struct., 47, 55 (2014).

    Article  Google Scholar 

  24. Y. Yuan, T. Guo, X. Li, and W. Li, Appl. Mech. Mater., 438–439, 266 (2013).

    Google Scholar 

  25. N. Cristelo, M. Cunha, M. Dias, T. Gomes, T. Miranda, and N. Araújo, Geotex. Geomem., 43, 1 (2015).

    Article  Google Scholar 

  26. L. Festugato, E. Menger, F. Benezra, A. Kipper, and C. Consoil, Geotex. Geomem., 45, 77 (2017).

    Article  Google Scholar 

  27. J. Liu, Q. Feng, Y. Wang, Y. Bai, J. Wei, and Z. Song, Adv. Mater. Sci. Eng., Article ID 2370763, https://doi.org/10.1155/2017/2370763 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Bai, Y., Song, Z. et al. Effect of Basalt Fiber on the Strength Properties of Polymer Reinforced Sand. Fibers Polym 19, 2372–2387 (2018). https://doi.org/10.1007/s12221-018-8507-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8507-2

Keywords

Navigation