Skip to main content
Log in

Structures and mechanical properties of plied and twisted polyacrylonitrile nanofiber yarns fabricated by a multi-needle electrospinning device

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polyacrylonitrile (PAN) nanofiber filaments were manufactured continuously for several hours by a homemade multi-needle electrospinning device. The yarns were continuously obtained by plying and twisting nanofiber filaments using a self-made twisting device. The structures and mechanical properties of yarns were investigated. The influences of twist setting temperatures and periods of time on morphology and mechanical properties were discussed. The results showed that the alignment degree of nanofibers along the filament axis could reach 70.9 %. The twist angle increased with increasing twists and the number of filaments. With increasing twists, the breaking stress and strain increased initially and then decreased; the maximum breaking stress and strain were 34.7 MPa and 26.1 %, respectively; the initial modulus decreased with increasing twists and plies, the maximum modulus was 391.3 MPa. Both the breaking stress and strain increased with the increase of twist setting temperatures and times. The optimal setting temperature and time were 90 °C and 30 min, respectively, the maximum breaking stress and strain were 32.8 MPa and 20.8 %, meanwhile, the crystallinity improved from 34.5 % to 39.9 %. This study demonstrates the possibility of continuously and stably manufacturing PAN nanofiber yarns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    Article  CAS  Google Scholar 

  2. S. Agarwal, A. Greiner, and J. H. Wendorff, Prog. Polym. Sci., 38, 963 (2013).

    Article  CAS  Google Scholar 

  3. S. Agarwal, J. H. Wendorff, and A. Greiner, Polymer, 49, 5603 (2008).

    Article  CAS  Google Scholar 

  4. L. Huang, S. S. Manickam, and J. R. McCutcheon, J. Membr. Sci., 436, 213 (2013).

    Article  CAS  Google Scholar 

  5. N. R. Dhineshbabu, G. Karunakaran, R. Suriyaprabha, P. Manivasakan, and V. Rajendran, Nano-micro Lett., 6, 46 (2014).

    Article  CAS  Google Scholar 

  6. B. Ding, M. Wang, J. Yu, and G. Sun, Sensors, 9, 1609 (2009).

    Article  CAS  Google Scholar 

  7. X. Zhuang, K. Jia, B. Cheng, X. Feng, S. Shi, and B. Zhang, Chem. Eng. J., 237, 308 (2014).

    Article  CAS  Google Scholar 

  8. J. Li, L. Tian, N. Pan, and Z. J. Pan, Polym. Eng. Sci., 54, 1618 (2014).

    Article  CAS  Google Scholar 

  9. E. Smit, U. Bttner, and R. D. Sanderson, Polymer, 46, 2419 (2005).

    Article  CAS  Google Scholar 

  10. J. Liu, G. Chen, H. Gao, L. Zhang, S. Ma, J. Liang, and H. Fong, Carbon, 50, 1262 (2012).

    Article  CAS  Google Scholar 

  11. W. E. Teo, R. Gopal, R. Ramaseshan, K. Fujihara, and S. Ramakrishna, Polymer, 48, 3400 (2007).

    Article  CAS  Google Scholar 

  12. H. Matsumoto, S. Imaizumi, Y. Konosu, M. Ashizawa, M. Minagawa, A. Tanioka, W. Lu, and J. Tour, ACS Appl. Mater. Interfaces, 5, 6225 (2013).

    Article  CAS  Google Scholar 

  13. S. C. Moon and R. J. Farris, Carbon, 47, 2829 (2009).

    Article  CAS  Google Scholar 

  14. X. Wang, K. Zhang, M. Zhu, H. Yu, Z. Zhou, Y. Chen, and B. S. Hsiao, Polymer, 49, 2755 (2008).

    Article  CAS  Google Scholar 

  15. H. Yan, L. Liu, and Z. Zhang, Mater. Lett., 65, 2419 (2011).

    Article  CAS  Google Scholar 

  16. F. Dabirian, Y. Hosseini, and S. A. H. Ravandi, J. Text. Inst., 98, 237 (2007).

    Article  CAS  Google Scholar 

  17. M. S. M. Jad, S. A. H. Ravandi, H. Tavanai, and R. H. Sanatgar, Fiber. Polym., 12, 801 (2011).

    Article  CAS  Google Scholar 

  18. S. F. Fennessey and R. J. Farris, Polymer, 45, 4217 (2004).

    Article  CAS  Google Scholar 

  19. Z. Xie, H. Niu, and T. Lin, RSC Adv., 5, 15147 (2015).

    Article  CAS  Google Scholar 

  20. J. He, K. Qi, Y. Zhou, and S. Cui, J. Appl. Polym. Sci., 131, 8 (2014).

    Google Scholar 

  21. S. Y. Gu, J. Ren, and Q. L. Wu, Synth. Met., 155, 157 (2005).

    Article  CAS  Google Scholar 

  22. L. Tian, T. Yan, and Z. J. Pan, J. Mater. Sci., 50, 7137 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijuan Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, T., Tian, L. & Pan, Z. Structures and mechanical properties of plied and twisted polyacrylonitrile nanofiber yarns fabricated by a multi-needle electrospinning device. Fibers Polym 17, 1627–1633 (2016). https://doi.org/10.1007/s12221-016-6553-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6553-1

Keywords

Navigation