Skip to main content
Log in

Development of Activated carbon from Windmill palm sheath fiber by KOH activation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, activated carbon was prepared from windmill palm sheath fiber (WPF) powder by KOH activation for full utilization of the bioresource. First, the optimal parameters of the activation technology, such as impregnation ratio, temperature, and time, were determined. The pyrolysis process and activation mechanism of KOH were investigated by thermogravimetric analysis (TGA). WPF powder-based activated carbons were then prepared under the optimized condition and characterized by SEM, FTIR, XRD, and nitrogen adsorption techniques. The reaction mechanisms were deduced in two phases. The reaction mechanisms in the first carbonization process were mainly related to substitution, scission, and oxidization reactions of methylene. In the second activation process, KOH and carbon began to react at 350 °C, producing potassium compounds, which further reacted with carbon. Results show that the optimal process for preparing an excellent adsorbent from WPF employs an impregnation ratio of 4:1 at 850 °C for 2.5 h, which can result in a good adsorption property for methylene blue, high BET surface area of 1734.34 m2/g, and total pore volume of 0.96 cm3/g. WPF-based activated carbon demonstrates a remarkable adsorption capacity, and thus WPF has great potential value as a new agricultural resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. H. Liu, J. R. Qiu, Z. Q. Tan, H. C. Zeng, H. Liu, X. Hu, and M. N. Zhang, Proce. CSEE, 32, 64 (2012).

    Google Scholar 

  2. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, J. Hazard. Mater., 164, 473 (2009).

    Article  CAS  Google Scholar 

  3. A. Arami-Niya, W. M. A. W. Daud, and F. S. Mjalli, J. Anal. Appl. Pyrol., 89, 197 (2010).

    Article  CAS  Google Scholar 

  4. D. B. Wang, Z. Geng, B. Li, and C. M. Zhang, Electrochimi. Acta, 173, 377 (2015).

    Article  CAS  Google Scholar 

  5. A. Kumar and H. M. Jena, Appl. Surf. Sci., 356, 753 (2015).

    Article  CAS  Google Scholar 

  6. P. Rechnia, A. Malaika, and M. Kozlowski, Fuel, 154, 338 (2015).

    Article  CAS  Google Scholar 

  7. M. E. Fernandez, G. V. Nunell, P. R. Bonelli, and A. L. Cukierman, Ind. Crop. Prod., 62, 437 (2014).

    Article  CAS  Google Scholar 

  8. A. S. Ello, L. K. C. de Souza, A. Trokourey, and M. Jaroniec, J. CO 2 Util., 2, 35 (2013).

    Article  CAS  Google Scholar 

  9. W. Chen, X. Liu, R. L. He, T. Lin, Q. F. Zeng, and X. G. Wang, Powder Technol., 234, 76 (2013).

    Article  CAS  Google Scholar 

  10. M. A. Lillo-Ródenas, J. Juan-Juan, D. Cazorla-Amorós, and A. Linares-Solano, Carbon, 42, 1371 (2004).

    Article  Google Scholar 

  11. I. Ozdemir, M. Sahin, R. Orhan, and M. Erdem, Fuel Process. Technol., 125, 200 (2014).

    Article  CAS  Google Scholar 

  12. H. Treviño-Cordero, L. G. Juárez-Aguilar, D. I. Mendoza-Castillo, V. Hernández-Montoya, A. Bonilla-Petriciolet, and M. A. Montes-Morán, Ind. Crop. Prod., 42, 315 (2013).

    Article  Google Scholar 

  13. M. C. Ncibi, B. Mahjoub, and M. Seffen, J. Hazard. Mater., 139, 280 (2007).

    Article  CAS  Google Scholar 

  14. W. Maatar, S. Alila, and S. Boufi, Ind. Crop. Prod., 49, 33 (2013).

    Article  CAS  Google Scholar 

  15. Y. S. Ho, W. T. Chiu, and C. C. Wang, Bioresour. Technol., 96, 1285 (2005).

    Article  CAS  Google Scholar 

  16. I. A. W. Tan, B. H. Hameed, and A. L. Ahmad, Chem. Eng. J., 127, 111 (2007).

    Article  CAS  Google Scholar 

  17. S. Senthilkumaar, P. R. Varadarajan, K. Porkodi, and C. V. Subbhuraam, J. Colloid Interface Sci., 284, 78 (2005).

    Article  CAS  Google Scholar 

  18. A. Macías-García, E. M. Cuerda-Correa, M. Olivares-Marín, A. Díaz-Paralejo, and M. Á. Díaz-Díez, Ind. Crop. Prod., 35, 105 (2012).

    Article  Google Scholar 

  19. S. Sivakumar, P. Senthilkumar, and V. Subburam, Bioresour. Technol., 80, 233 (2001).

    Article  Google Scholar 

  20. K. S. K. Reddy, A. Al Shoaibi, and C. Srinivasakannan, New Carbon Mater., 27, 344 (2012).

    Article  CAS  Google Scholar 

  21. M. Guo, T. H. Zhang, B. W. Chen, and L. Cheng, Compos. Pt. A-Appl. Sci. Manuf., 62, 45 (2014).

    Article  CAS  Google Scholar 

  22. L. Cheng, T. H. Zhang, M. Guo, and X. L. Li, Wood Fiber Sci., 46, 270 (2014).

    CAS  Google Scholar 

  23. Y. X. Huang, E. Ma, and G. J. Zhao, Ind. Crop. Prod., 69, 447 (2015).

    Article  CAS  Google Scholar 

  24. J. Yang, Z. Shen, and Z. Hao, Carbon, 42, 1872 (2004).

    Article  CAS  Google Scholar 

  25. Y. Chen, L. J. Zhou, Y. Z. Hong, F. Cao, L. Li, and J. B. Li, New Carbon Mater., 25, 151 (2010).

    CAS  Google Scholar 

  26. J. J. Kong, Q. Y. Yue, P. Zhao, B. Y. Gao, Q. Li, Y. Wang, H. H. Ngo, and W. S. Guo, Fuel Process. Technol., 140, 67 (2015).

    Article  CAS  Google Scholar 

  27. Y. J. Kan, Q. Y. Yue, B. Y. Gao, and Q. Li, Mater. Lett., 159, 443 (2015).

    Article  CAS  Google Scholar 

  28. B. Cagnon, X. Py, A. Guillot, F. Stoeckli, and G. Chambat, Bioresour. Technol., 100, 292 (2009).

    Article  CAS  Google Scholar 

  29. D. Lozano-Castelló, J. M. Calo, D. Cazorla-Amorós, and A. Linares-Solano, Carbon, 45, 2529 (2007).

    Article  Google Scholar 

  30. M. A. Lillo-Roódenas, D. Cazorla-Amorós, and A. Linares-Solano, Carbon, 41, 267 (2003).

    Article  Google Scholar 

  31. F. C. Wu, R. L. Tseng, and R. S. Juang, J. Colloid Interface Sci., 283, 49 (2005).

    Article  CAS  Google Scholar 

  32. L. Zhu, H. Qi, M. Lv, Y. Kong, Y. Yu, and X. Xu, Biores. Technol., 124, 455 (2012).

    Article  CAS  Google Scholar 

  33. K. Kirtania, J. Tanner, K. B. Kabir, S. Rajendran, and S. Bhattacharya, Bioresour. Technol., 151, 36 (2014).

    Article  CAS  Google Scholar 

  34. P. Sathya, G. Velraj, and S. Meyvel, Adv. Appl. Sci. Res., 3, 776 (2012).

    CAS  Google Scholar 

  35. E. C. Lima, B. Royer, J. C. P. Vaghetti, N. M. Simon, B. Cunha, F. A. Pavan, E. V. Benvenuti, R. Veses, and C. Airold, J. Hazard. Mater., 155, 536 (2008).

    Article  CAS  Google Scholar 

  36. J. C. Domínguez, M. Oliet, M. V. Alonso, E. Rojo, and F. Rodríguez, Ind. Crops Prod., 42, 308 (2013).

    Article  Google Scholar 

  37. K. Y. Foo and B. H. Hameed, Desalination, 275, 302 (2011).

    Article  CAS  Google Scholar 

  38. S. Brunauer, P. H. Emmet, and F. Teller, J. Am. Chem. Soc., 60, 309 (1938).

    Article  CAS  Google Scholar 

  39. S. Yorgun, N. Vural, and H. Demiral, Mater., 122, 189 (2009).

    CAS  Google Scholar 

  40. A. C. Lua and J. Guo, Colloid Surf. A-Physicochem. Eng. Asp., 179, 151 (2001).

    Article  CAS  Google Scholar 

  41. X. Ma, F. Zhang, and J. Zhu, Bioresour. Technol., 164, 1 (2014).

    Article  CAS  Google Scholar 

  42. A. Ahmadpour and D. D. Do, Carbon, 34, 471 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, K., Zhang, T. et al. Development of Activated carbon from Windmill palm sheath fiber by KOH activation. Fibers Polym 17, 880–887 (2016). https://doi.org/10.1007/s12221-016-6328-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6328-8

Keywords

Navigation