Skip to main content
Log in

FE analysis of thermal properties of woven fabric constructed by yarn incorporated with microencapsulated phase change materials

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Phase Change Materials are the substances which can store or release a large amount of energy in the form of latent heat at certain melting temperatures. Such properties open new opportunities in the development of thermo-regulating textiles for thermal protection against extreme environment. In this work, a woven fabric has been made using a novel synthetic yarn incorporated with Microencapsulated Phase Change Materials and its heat transfer property has been studied using finite element analysis. The result of simulation after post processing has been validated against experimental result. It shows a strong correlation between the predicted and experimental results. Based on validated model, delay in temperature rise as a function of time is also predicted which is not possible to be determined through experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mondal, Appl. Therm. Eng., 28, 1536 (2008).

    Article  CAS  Google Scholar 

  2. N. Sarier and E. Onder, Thermochim. Acta, 452, 149 (2007).

    Article  CAS  Google Scholar 

  3. P. Sánchez, M. V. Sánchez-Fernandez, A. Romero, J. F. Rodríguez, and L. Sánchez-Silva, Thermochim. Acta, 498, 16 (2010).

    Article  Google Scholar 

  4. J. C. H. Chen and J. L. Eichelberger, U.S. Patent, 4505953 (1985).

    Google Scholar 

  5. M. H. Hartmann, U.S. Patent, 6689466 (2004).

    Google Scholar 

  6. M. Jaworski, Appl. Therm. Eng., 70, 665 (2014).

    Article  Google Scholar 

  7. S. Harikrishnan, S. Magesh, and S. Kalaiselvam, Thermochim. Acta, 565, 137 (2013).

    Article  CAS  Google Scholar 

  8. B. Pause, J. Ind. Text., 33, 93 (2003).

    Article  CAS  Google Scholar 

  9. C. Y. Zhaoaand G. H. Zhang, Renew. Sust. Energ. Rev., 15, 3813 (2011).

    Article  Google Scholar 

  10. M. A. G. Lazcano and W. Yu, J. Therm. Anal. Calorim., 117, 9 (2014).

    Article  Google Scholar 

  11. G. E. R. Lamb and K. Duffy-Morris, Text. Res. J., 60, 261 (1990).

    Article  CAS  Google Scholar 

  12. B. Pause, J. Ind. Text., 25, 59 (1995).

    Article  CAS  Google Scholar 

  13. M. L. Nuckols, Ocean Eng., 26, 547 (1999).

    Article  Google Scholar 

  14. H. Shim, E. A. McCullough, and B. W. Jones, Text. Res. J., 71, 495 (2001).

    Article  CAS  Google Scholar 

  15. J. Kim and G. Cho, Text. Res. J., 72, 1093 (2002).

    Article  CAS  Google Scholar 

  16. K. Ghali, N. Gaddhar, J. Harathani, and B. Jones, Tex. Res. J., 74, 205 (2004).

    Article  CAS  Google Scholar 

  17. L. I. Yi and Z. Qingyong, Text. Res. J., 74, 447 (2004).

    Article  Google Scholar 

  18. L. Fengzhi and L. Yi, Modell. Simul. Mater. Sci. Eng., 15, 223 (2007).

    Article  Google Scholar 

  19. L. Fengzhi, Mod. Phys. Lett. B, 23, 501 (2009).

    Article  Google Scholar 

  20. B. Ying, Y. Li, Y.-L. Kwok, and Q. Song, Proc. ICIECS, 1 (2009).

    Google Scholar 

  21. W. Bendkowska and H. Wrzosek, Fibres Text. East. Eur., 17, 76 (2009).

    Google Scholar 

  22. S. Alay, C. Alkan, and F. Göde, J. Text. Inst., 103, 757 (2012).

    Article  CAS  Google Scholar 

  23. H. Yoo, J. Lim, and E. Kim, Text. Res. J., 83, 671 (2013).

    Article  Google Scholar 

  24. Y. Hu, D. Huang, Z. Qi, S. He, H. Yang, and H. Zhang, Int. J. Heat Mass Tran., 49, 567 (2013).

    Article  CAS  Google Scholar 

  25. M. O. R. Siddiqui and D. Sun, J. Compos. Mater., 49, 2337 (2014).

    Article  Google Scholar 

  26. K. Iqbal and D. Sun, Fiber. Polym., 16, 1156 (2015).

    Article  CAS  Google Scholar 

  27. W. Li, J. Wang, X. Wang, S. Wu, and X. Zhang, Colloid. Polym. Sci., 285, 1691 (2007).

    Article  CAS  Google Scholar 

  28. X. Zhang, Y. Fan, X. Tao, and K. Yick, Mater. Chem. Phys., 88, 300 (2004).

    Article  CAS  Google Scholar 

  29. ABAQUS Inc., Abaqus User’s Manual, 6, 12 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danmei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, K., Sun, D., Stylios, G.K. et al. FE analysis of thermal properties of woven fabric constructed by yarn incorporated with microencapsulated phase change materials. Fibers Polym 16, 2497–2503 (2015). https://doi.org/10.1007/s12221-015-5607-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5607-0

Keywords

Navigation