Skip to main content
Log in

Development of nanofibrous membranes with far-infrared radiation and their antimicrobial properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study investigated the incorporation of nanoscale germanium (Ge) and silicon dioxide (SiO2) particles into poly(vinyl alcohol) (PVA) nanofibers with the aim of developing nanostructures with far-infrared radiation effects and antimicrobial properties for biomedical applications. Composite fibers containing Ge and SiO2 were fabricated at various concentrations of Ge and/or SiO2 using electrospinning and layered on polypropylene nonwoven. The morphological properties of the nanocomposite fibers were characterized using a field-emission scanning electron microscope and a transmission electron microscope. The far-infrared emissivity and emissive power of the nanocomposite fibers were examined in the wavelength range of 5-20 μm at 37 °C. The antibacterial properties were quantitatively assessed by measuring the bacterial reductions of Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. Multi-component composite fibers electrospun from 11 wt% PVA solutions containing 0.5 wt% Ge and 1 wt% SiO2 nanoparticles exhibited a far-infrared emissivity of 0.891 and an emissive power of 3.44·102 W m−2 with a web area density of 5.55 g m−2. The same system exhibited a 99.9 % bacterial reduction against both Staphylococcus aureus and Escherichia coli, and showed a 34.8 % reduction of Klebsiella pneumoniae. These results demonstrate that PVA nanofibrous membranes containing Ge and SiO2 have potential in medical and healthcare applications such as wound healing dressings, skin care masks, and medical textile products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Fijino and M. Kabaya, U. S. Patent, 4680822 (1987).

    Google Scholar 

  2. O. Aki, Y. Yamamoto, M. Matsuoka, H. Tachibana, and S. Tanase, U. S. Patent, 4976706 (1990).

    Google Scholar 

  3. Y. Li, D. Wu, J. Hu, and S. Wang, Colloid. Surface A, 300, 140 (2007).

    Article  CAS  Google Scholar 

  4. M. H. Shim, C. H. Park, and H. S. Shim, Text. Res. J., 79, 1557 (2009).

    Article  CAS  Google Scholar 

  5. N. Ise, T. Katsuura, Y. Kikuchi, and E. Miwa, Annals Physiol. Anthropol., 6, 31 (1987).

    Article  CAS  Google Scholar 

  6. S. Inoué and K. Honda, Zool. Sci., 3, 731 (1986).

    Google Scholar 

  7. H. Toyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima, H. Nakanishi, A. Kwon, Y. Azuma, T. Nagaoka, T. Ogawa, and Y. Kamiyama, Exp. Biol. Med., 228, 724 (2003).

    Article  CAS  Google Scholar 

  8. A. Greiner and J. H. Wendorff, Angew Chem. Int. Ed., 46, 5670 (2007).

    Article  CAS  Google Scholar 

  9. S. Lee, J. Appl. Polym. Sci., 114, 3652 (2009).

    Article  CAS  Google Scholar 

  10. K. Lee and S. Lee, J. Appl. Polym. Sci., 124, 4038 (2012).

    Article  CAS  Google Scholar 

  11. J. K. Kim and H. Ahn, Macromol. Res., 16, 163 (2008).

    Article  CAS  Google Scholar 

  12. S. A. Jones, P. G. Bowler, M. Walker, and D. Parsons, Wound. Rep. Reg., 12, 288 (2004).

    Article  Google Scholar 

  13. P. Taepaiboon, U. Rungsardthong, and P. Supaphol, Nanotechnology, 17, 2317 (2006).

    Article  CAS  Google Scholar 

  14. M. Ignatova, K. Starbova, N. Markova, N. Manolova, and I. Rashkov, Carbohyd. Res., 341, 2098 (2006).

    Article  CAS  Google Scholar 

  15. K. K. H. Wong, J. L. Hutter, M. Zinke-Allmang, and W. Wan, Eur. Polym. J., 45, 1349 (2009).

    Article  CAS  Google Scholar 

  16. X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramakrishna, Biomaterials, 25, 1883 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. I. Sakurada, “Polyvinyl Alcohol Fibers”, pp.187–209, Marcel Dekker, Inc., New York, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungsin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, J., Lee, S. Development of nanofibrous membranes with far-infrared radiation and their antimicrobial properties. Fibers Polym 15, 1153–1159 (2014). https://doi.org/10.1007/s12221-014-1153-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-1153-4

Keywords

Navigation