Skip to main content
Log in

Melt-spinning basalt fibers based on dielectric heating and steady-state process characteristics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, we introduce a new melt-spinning technology for producing basalt fibers on a laboratory scale and provide a dynamic model describing the basalt-fiber spinning process with the thermal effect in terms of an Arrhenius equation. The new trial system for basalt melt-spinning was established, while a microwave furnace was used to melt the quarried basalt rocks. And a susceptor, i.e., silicon carbide (SiC) was applied. A crucible with a one-hole bushing took the role of the spinning block, which was placed in the heating zone. A take-up device controlled by a PC was installed and the take-up speed was varied in order to investigate the fiber drawing effect on the thickness produced. Experimental results demonstrated that this new system is feasible for producing basalt fibers. The theoretical estimate of the fiber diameter profile with the Arrhenius viscosity description along the spinning line agreed well with the measurement. The diameter profile of the basalt fibers decreased with a funnel-shaped profile along the spinning line, while it changed very rapidly near the bushing hole up to the position 15 mm downwards, and then the fiber diameter decreased further up to the position 30 mm. In the remaining spinning zone the diameter reduction was very small. The gravitational effect of the molten basalt in the crucible on the fiber diameter was negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Militky and V. Kovacic, Text. Res. J., 66, 225 (1996).

    Article  CAS  Google Scholar 

  2. J. Militky and V. Kovacic, Molecular Crystals and Liquid Crystals, 304, 55 (2000).

    Google Scholar 

  3. M. Botev, H. Betchev, D. Bikiaris, and C. Panayiotou, J. Appl. Polym. Sci., 74, 523 (1999).

    Article  CAS  Google Scholar 

  4. T. Czigany, J. Vad, and K. Poloskei, Periodica Polytechnica Ser. Mech. Eng., 49, 3 (2005).

    Google Scholar 

  5. T. Czigany, Compos. Sci. Technol., 66, 3210 (2006).

    Article  CAS  Google Scholar 

  6. P. I. Bashtannik, A. I. Kabak, and Y. Yakovchuk, Mech. Compos. Mater., 39, 85 (2003).

    Article  Google Scholar 

  7. A. M. Zihlif and G. Ragosta, J. Thermoplastic Composite Materials, 16, 273 (2003).

    Article  CAS  Google Scholar 

  8. B. K. Satapathy and J. Bijwe, J. Reinf. Plast. Comp., 24, 579 (2005).

    Article  CAS  Google Scholar 

  9. B. Ozturk, F. Arslan, and S. Ozturk, Tribology International, 40, 37 (2007).

    Article  Google Scholar 

  10. F. N. Rabinovich, V. N. Zueva, and L. V. Mekeeva, Glass and Ceramics, 58, 431 (2001).

    Article  CAS  Google Scholar 

  11. D. Penteado Dias and C. Thaumaturgo, Cem. Concr. Compos., 27, 49 (2005).

    Article  Google Scholar 

  12. J. S. Sim, C. W. Park, and D. Y. Moon, Compos. Part BEng., 36, 504 (2005).

    Article  Google Scholar 

  13. G. J. Wang, Y. W. Liu, Y. J. Guo, Z. X. Zhang, M. X. Xu, and Z. X. Yang, Surface & Coating Technology, 201, 6565 (2007).

    Article  CAS  Google Scholar 

  14. V. V. Gur’ev, E. I. Neproshin, and G. E. Mostovoi, Glass and Ceramics, 58, 62 (2001).

    Article  Google Scholar 

  15. H. J. Kim, H. W. Yang, K. J. Jeon, and Y. Huh, Text. Sci. Eng., 46, 136 (2009).

    CAS  Google Scholar 

  16. Y. Huh, H. J. Kim, H. W. Yang, and K. J. Jeon, J. Korean Soc. Precision Eng., 26, 78 (2009).

    Google Scholar 

  17. C. Zhao, J. Vleugels, C. Groffils, P. J. Luypaert, and O. Van der Biest, Acta Materialia, 48, 3795 (2000).

    Article  CAS  Google Scholar 

  18. S. Kase and T. Matsuo, J. Polym. Sci. Pol. Chem., 3, 2541 (1965).

    CAS  Google Scholar 

  19. S. Kase and T. Matsuo, J. Appl. Polym. Sci., 11, 251 (1967).

    Article  CAS  Google Scholar 

  20. F. T. Geyling and G. M. Homsy, Glass Technology, 21, 95 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Huh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Lim, J.H. & Huh, Y. Melt-spinning basalt fibers based on dielectric heating and steady-state process characteristics. Fibers Polym 14, 1148–1156 (2013). https://doi.org/10.1007/s12221-013-1148-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1148-6

Keywords

Navigation