Skip to main content
Log in

Investigation of the effect of cupric chloride on thermal stabilization of polyamide 6 as carbon fiber precursor

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

An investigation on the role of cupric (Cu2+) ion incorporation during the thermal stabilization of polyamide 6 fibers was carried out using a combination of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) measurements. Cupric chloride pretreated and thermally stabilized polyamide 6 (PA6) fibers was characterized by a reduction in fiber diameter and linear density values together with color changes from light brown to black with increasing stabilization time. PA6 fibers were properly stabilized after 8 h of stabilization time prior to carbonization. The results obtained from DSC and TGA measurements indicated that there was an improvement in the thermal stability when cupric (Cu2+) ions were incorporated into the polymer structure. TGA thermograms showed the relative improvement in thermal stability as indicated by increasing char yield with progressing time. Char yield reached a maximum value of 33.6 % at 1000 °C for the cupric chloride pretreated PA6 fibers stabilized for 12 h at 180 °C. Experimental results obtained from DSC and X-ray diffraction methods suggested the loss of crystallinity as a result of perturbation of hydrogen bonds with progressing time. The formation of cupric ion-amide coordination bonds improved the thermal stabilization by encouraging the development of ladder-like structures. The investigation resulted in a new method of evaluation of X-ray stabilization index specifically intended for the thermally stabilized PA6 fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Donnet and R. C. Bansal, “Carbon Fibers”, Marcel Dekker, New York, 1984.

    Google Scholar 

  2. P. D. Mangalgiri, Bull. Mater. Sci., 22, 657 (1999).

    Article  CAS  Google Scholar 

  3. D. L. Chung, “Carbon Fiber Composites”, pp.3–65, Butterworth-Heinemann: Boston, M.A., USA, 1994.

    Google Scholar 

  4. T. A. Edison, U.S. Patent, 223898 (1880).

  5. W. Johnson, L. N. Phillips, and W. Watt, U.S. Patent, 3412062 (1966).

  6. R. Bacon and W. A. Shalamon, Appl. Polym. Symp., 9, 285 (1969).

    Google Scholar 

  7. A. Shindo, Y. Nakanishi, and I. Soma, Appl. Polym. Symp., 9, 271 (1969).

    Google Scholar 

  8. A. Shindo, U.S. Patent, 3529934 (1970).

  9. X. Huang, Materials, 2, 2369 (2009).

    Article  CAS  Google Scholar 

  10. C.-I. Su and C.-L. Wang, Fiber. Polym., 8, 477 (2007).

    Article  CAS  Google Scholar 

  11. D. J. Johnson, J. Phys. D: Appl. Phys., 20, 286 (1987).

    Article  CAS  Google Scholar 

  12. M. L. Minus and S. Kumar, J. Minerals, Metals and Materials, 57, 52 (2005).

    CAS  Google Scholar 

  13. D. Zhang and Q. Sun, J. Appl. Poly. Sci., 62, 367 (1996).

    Article  CAS  Google Scholar 

  14. A. R. Postema, H. De Groot, and A. J. Pennings, J. Mat. Sci., 25, 4216 (1990).

    Article  CAS  Google Scholar 

  15. S. Horikiri, J. Iseki, and M. Minobe, U.S. Patent, 4070446 (1978).

  16. T.-H. Ko, U.S. Patent, 7670970 (2010).

  17. W. J. Noss, U.S. Patent, 3488151 (1970)

  18. U. K. Fatema, C. Tomizawa, M. Harada, and Y. Gotoh, Carbon, 49, 2158 (2011).

    Article  CAS  Google Scholar 

  19. S.-J. Zhang, H.-Q. Yu, and H.-M. Feng, Carbon, 44, 2059 (2006).

    Article  CAS  Google Scholar 

  20. Sumitomo Chemical Company Ltd., British Patent, 1406378 (1973).

  21. H. Ashitaka, Y. Kusuki, S. Yamamoto, Y. Ogata, and A. Nagasaka, J. Appl. Polym. Sci., 29, 2763 (1984).

    Article  CAS  Google Scholar 

  22. E. A. Boucher, R. N. Cooper, and D. H. Everett, Carbon, 8, 597 (1970).

    Article  CAS  Google Scholar 

  23. K. S. Ko, C. W. Park, S.-H. Yoon, and S. M. Oh, Carbon, 39, 1619 (2001).

    Article  CAS  Google Scholar 

  24. J. A. Newell, D. D. Edie, and E. L. Fuller Jr., J. Appl. Polym. Sci., 60, 825 (1996).

    Article  CAS  Google Scholar 

  25. M. C. Blanko Lopez, A. Martinez-Aloso, and J. M. D. Tascon, Carbon, 39, 1177 (2000).

    Article  Google Scholar 

  26. M. Shioya, K. Shinotani, and A. Takaku, J. Mater. Sci., 34, 6015 (1999).

    Article  CAS  Google Scholar 

  27. K. Kawamura and G. M. Jenkins, J. Mater. Sci., 5, 262 (1970).

    Article  CAS  Google Scholar 

  28. D. E. Stuetz, U.S. Patent, 3449077 (1969).

  29. W. Johnson, R. Moreton, L. N. Phillips, and W. Watt, French Patent, 20622005 (1971).

  30. Yu. D. Andrichenko and T. V. Druzhinina, Fiber Chem., 31, 1 (1999).

    Article  CAS  Google Scholar 

  31. A. V. Tovmash, A. K. Budyka, V. G. Managulashvili, V. A. Rykunov, A. D. Shepelev, and B. I. Ogorodnikov, Fiber Chem., 39, 450 (2007).

    Article  CAS  Google Scholar 

  32. J. G. Santangelo, U.S. Patent, 3547584 (1970).

  33. S. A. El-Garf and S. M. El-Kemry, Text. Res. J., 67, 13 (1997).

    CAS  Google Scholar 

  34. S. Dadbin, M. Frounchi, and D. Goudarzi, Polym. Degrad. Stab., 89, 436 (2005).

    Article  CAS  Google Scholar 

  35. T. Yang, L. Ye, and Y. Shu, J. Appl. Polym. Sci., 110, 856 (2008).

    Article  CAS  Google Scholar 

  36. B. Lanska, L. Matisova-Rychla, and J. Rychla, Polym. Degrad. Stab., 87, 361 (2005).

    Article  CAS  Google Scholar 

  37. B. Lanska, L. Matisova-Rychla, and J. Rychla, Polym. Degrad. Stab., 89, 534 (2005).

    Article  CAS  Google Scholar 

  38. A. Siegmann and Z. Baraam, Macromol. Chem., Rapid. Commun., 1, 113 (1980).

    Article  CAS  Google Scholar 

  39. A. Siegmann and Z. Baraam, Int. J. Polymeric. Mater., 8, 243 (1980).

    Article  CAS  Google Scholar 

  40. D. S. Kelkar and N. V. Bhat, J. Appl. Polym. Sci., 43, 191 (1991).

    Article  CAS  Google Scholar 

  41. P. Dunn and G. F. Sansom, J. Appl. Polym. Sci., 13, 1657 (1969).

    Article  CAS  Google Scholar 

  42. A. Siegmann and Z. Baraam, Polym. Eng. Sci., 21, 223 (1981).

    Article  CAS  Google Scholar 

  43. D. S. Kelkar and N. V. Bhat, J. Phys. D: Appl. Phys., 23, 899 (1990).

    Article  Google Scholar 

  44. http://www.oerlikon.com/ecomaXL/index.php?site=OERLIKON_EN_investor_relations_new_otherpublications (L NK Page # of 873 for Fiber-year-2009-2010 report) (Accessed 28.Nov.2011)

  45. A. Lisbao Simal and A. Regina Martin, J. Appl. Polym. Sci., 68, 441 (1998).

    Article  CAS  Google Scholar 

  46. X. Liu, Q. Wu, L. A. Berglund, and Z. Qi, Macromol. Mater. Eng., 287, 515 (2002).

    Article  CAS  Google Scholar 

  47. M. V. McCabe, U.S. Patent, 4661336 (1987).

  48. A. M. Hindeleh, D. J. Johnson, and P. E. Montague, “Fibre Diffraction Methods” (A. D. French and K. H. Gardner Eds.), pp.149–181, ACS Symp. No. 141, American Chemical Society, Washington DC, 1983.

    Chapter  Google Scholar 

  49. N. S. Murthy, H. Minor, and C. Bednarczyk, Macromolecules, 26, 1712 (1993).

    Article  CAS  Google Scholar 

  50. A. M. Hindeleh and D. J. Johnson, Polymer, 19, 27 (1978).

    Article  CAS  Google Scholar 

  51. N. S. Murthy, S. M. Aharoni, and B. Szollosi, J. Polym. Sci., Polym. Phys., 23, 2549 (1985).

    CAS  Google Scholar 

  52. B. L. Deopura in “Polyesters and Polyamides” (B. L. Deopura, R. Alagirusami, M. Joshi, and B. Gupta Eds.), pp.41–60, Woodhead Publishing, Cambridge, UK, 2008.

    Chapter  Google Scholar 

  53. F. Auriemma, V. Petraccone, L. Parravicini, and P. Corradini, Macromolecules, 30, 7554 (1997).

    Article  CAS  Google Scholar 

  54. L. Penel-Pierron, C. Depecker, R. Seguela, and J.-M. Lefebvre, J. Polym. Sci. Pol. Phys., 39, 484 (2001).

    Article  CAS  Google Scholar 

  55. N. Vasanthan, Text. Res. J., 74, 545 (2004).

    Article  CAS  Google Scholar 

  56. I. Abu-Isa, J. Polym. Sci. Pol. Chem., 9, 199 (1971).

    Article  CAS  Google Scholar 

  57. H. H. Chuah and R. S. Porter, Polymer, 27, 241 (1986).

    Article  CAS  Google Scholar 

  58. S. Y. Kwak, J. H. Kim, S. Y. Kim, H. G. Jeong, and I. H. Kwon, J. Polym. Sci. Pol. Phys., 38, 1285 (2000).

    Article  CAS  Google Scholar 

  59. H. M. Heuvel and R. Huisman, J. Appl. Polym. Sci., 26, 713 (1981).

    Article  CAS  Google Scholar 

  60. S. Murase, M. Kashima, K. Kudo, and M. Hirami, Makromol. Chem. Phys., 198, 561 (1997).

    Article  CAS  Google Scholar 

  61. Y. Li, L. Cui, F. Guan, Y. Gao, N. E. Hedin, L. Zhu, and H. Fong, Macromolecules, 40, 6283 (2007).

    Article  Google Scholar 

  62. N. Vasanthan, J. Polym. Sci. Pol. Phys., 41, 2870 (2003).

    Article  CAS  Google Scholar 

  63. L.-C. Chao and E.-P. Chang, J. Appl. Polym. Sci., 26, 603 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Karacan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karacan, I., Baysal, G. Investigation of the effect of cupric chloride on thermal stabilization of polyamide 6 as carbon fiber precursor. Fibers Polym 13, 864–873 (2012). https://doi.org/10.1007/s12221-012-0864-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0864-7

Keywords

Navigation