Skip to main content
Log in

Improved dispersion of carbon nanotubes in chitosan

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNT)/chitosan films and fibers can find use in specialized applications like the artificial muscles and other intelligent switching devices. The dispersion state of the single walled carbon nanotubes (SWCNTs) in chitosan matrix plays a major role in deciding the ultimate properties of composite. A suitable chemical treatment for purification and functionalization of SWCNTs is reported. Optimal conditions to prepare water soluble and stable, dispersion of SWCNT in chitosan are presented. The dispersion behavior of purified and functionalized SWCNT was characterized by visual observations, transmission electron microscopy (TEM), and Raman spectroscopy. The dispersion obtained using functionalized SWCNT was stable, while the purified SWCNT dispersion showed limited stability. The better stability of functionalized SWCNT dispersion in chitosan was evidenced by improved interaction between chitosan and carboxyl functional groups of SWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. F. Harris, “Carbon Nanotubes and Related Structures”, pp.1–12, Cambridge University Press, 1999.

  2. H. G. Chae and S. Kumar, Indian J. Fibre Text., 31, 29 (2006).

    CAS  Google Scholar 

  3. R. Ramasubramaniam, J. Chen, and H. Liu, Appl. Phys. Lett., 83, 2928 (2003).

    Article  CAS  Google Scholar 

  4. Q. Chen, C. Saltiel, and S. Manickavasagam, J. Colloid Interf. Sci., 280, 91 (2004).

    Article  CAS  Google Scholar 

  5. J. Tkac and T. Ruzgas, Electrochem. Commun., 8, 899 (2006).

    Article  CAS  Google Scholar 

  6. Y.-C. Tsai and J.-D. Huang, Electrochem. Commun., 8, 956 (2006).

    Article  CAS  Google Scholar 

  7. N. Grossiord, S. J. Loos, S. O. Regev, and C. E. Koning, Chem. Mater., 18, 1089 (2006).

    Article  CAS  Google Scholar 

  8. L. A. Montoro and M. Rosolen, Carbon, 44, 3293 (2006).

    Article  CAS  Google Scholar 

  9. X. Yangchuan, L. Liang, C. Charles, and R. V. Hull, Langmuir, 21, 4185 (2005).

    Article  Google Scholar 

  10. S. Kumar, A. Govindaraj, J. Mofokeng, G. N. Subbanna, and C. N. R. Rao, J. Phys. B-At. Mol. Opt., 29, 4925 (1996).

    Article  Google Scholar 

  11. A. Curulli, S. Nonziante, and A. Coppe, Microchim. Acta, 152, 225 (2006).

    Article  CAS  Google Scholar 

  12. A. Felten, C. Bittencourt, J. J. Pireaux, G. Van Lier, and J. C. Charlier, J. Appl. Phys., 98, 074308 (2005).

    Google Scholar 

  13. B. N. Khare, P. Wilhite, B. Tran, E. Teixeira, K. Fresquez, D. N. Mvondo, C. Bauschlicher, and M. Meyyappan, J. Phys. Chem. B, 109, 23466 (2005).

    Article  CAS  Google Scholar 

  14. H. Jia, Y. Lian, O. Midori, T. Nakahodo, Y. Maedab, T. Tsuchiya, T. Wakahara, and T. Akasaka, Sci. Technol. Adv. Mater., 6, 571 (2005).

    Article  CAS  Google Scholar 

  15. D. Hill, Y. Lin, L. Qu, A. Kitaygorodskiy, J. W. Connell, L. F. Allard, and S. Y. Ping, Macromolecules, 38, 7670 (2005).

    Article  CAS  Google Scholar 

  16. S. M. Lefrant, M. Baibaraca, I. Baltogb, I. Y. Mevellec, C. Godona, and O. Chauvet, Diam. Relat. Mater., 14, 867 (2005).

    Article  CAS  Google Scholar 

  17. Y. Wang, I. Zafar, and S. Mitra, Carbon, 43, 1015 (2005).

    Article  CAS  Google Scholar 

  18. K. Mylvaganam and L. C. Zhang, J. Phys. Chem. B, 108, 15009 (2004).

    Article  CAS  Google Scholar 

  19. F. Liang, J. M. Beach, P. K. Rai, R. E. Smalley, and W. E. Billups, Chem. Mater., 18, 1520 (2006).

    Article  CAS  Google Scholar 

  20. D. S. Bag, R. Dubey, N. Zhang, V. K. Varadan, D. Lal, and G. N. Mathur, Smart Mater. Struct., 13, 1263 (2004).

    Article  CAS  Google Scholar 

  21. N. Grossiord, J. Loos, O. Regev, and C. E. Koning, Chem. Mater., 18, 1089 (2006).

    Article  CAS  Google Scholar 

  22. C. Y. Hong, Y. Z. You, and C. Y. Pan, Polymer, 47, 4300 (2006).

    Article  CAS  Google Scholar 

  23. C. Wang, G. Zhou, H. Liu, J. Wu, Y. Qiu, B. L. Gu, and W. Duan, J. Phys. Chem. B, 110, 10266 (2006).

    Article  CAS  Google Scholar 

  24. S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, and A. Tagliaferro, Physica E, 37, 58 (2007).

    Article  CAS  Google Scholar 

  25. C. G. Salzmann, T. T. C. Bryan, T. Gerard, A. L. Simonl, and L. H. G. Malcol, Carbon, 45, 907 (2007).

    Article  CAS  Google Scholar 

  26. L. M. Ericson and P. E. Pehrsson, J. Phys. Chem. B, 109, 20276 (2005).

    Google Scholar 

  27. S. Lefrant, J. P. Buisson, O. Chauvet, J. M. Benoit, P. Bernier, and M. Baltog, Proc. Materials Research Society Symposium, 706, 231 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manjeet Jassal or Ashwini K. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozarkar, S., Jassal, M. & Agrawal, A.K. Improved dispersion of carbon nanotubes in chitosan. Fibers Polym 9, 410–415 (2008). https://doi.org/10.1007/s12221-008-0066-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-008-0066-5

Keywords

Navigation