Skip to main content
Log in

Classification of Solutions to Mixed Order Conformally Invariant Systems in \({\mathbb {R}}^2\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the following mixed-order conformally invariant system with coupled nonlinearity in \({\mathbb {R}}^{2}\):

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{\frac{1}{2}}u(x)=u^{p_1}(x)e^{q_1 v(x)}, \qquad &{}x\in {\mathbb {R}}^{2}, \\ \\ (-\Delta ) v(x)=u^{p_2}(x)e^{q_2 v(x)}, \qquad &{}x\in {\mathbb {R}}^{2}, \end{array}\right. } \end{aligned}$$
(0.1)

where \(0\le p_1 < \frac{1}{1+K}\), \( p_2 >0\), \(q_1 >0\), \(q_2 \ge 0\), \(u>0\) and satisfies \(\int _{{\mathbb {R}}^{2}}u^{p_2}(x)e^{q_2 v(x)}dx<+\infty \). Under the assumptions, \(u(x)=O(|x|^{K})\) at \(\infty \) for some \(K\ge 1\) arbitrarily large and \(v^{+}(x)=O(\ln |x|)\) if \(q_2>0\) at \(\infty .\) We firstly derived the equivalent integral representation formula for (0.1). Then we discuss the exact asymptotic behavior of the solutions to system (0.1) as \(|x|\rightarrow \infty \). At last, by using the method of moving spheres in integral form, we give the classification of the classical solutions to (0.1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogdan, K., Kulczycki, T., Nowak, A.: Gradient estimates for harmonic and \(q\)-harmonic functions of symmetric stable processes. Illinois J. Math. 46, 541–556 (2002)

    Article  MathSciNet  Google Scholar 

  2. Branson, T.P.: Group representations arising from Lorentz conformal geometry. J. Funct. Anal. 74, 199–291 (1987)

    Article  MathSciNet  Google Scholar 

  3. Branson, T.P., Oersted, B.: Explicit functional determinants in four dimensions. Commun. Partial Differ. Equ. 16, 1223–1253 (1991)

    Article  Google Scholar 

  4. Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of \(-\Delta u=V(x)e^{u}\) in two dimensions. Commun. Partial. Differ. Equ. 16, 1223–1253 (1991)

    Article  Google Scholar 

  5. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L., Vasseur, L.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MathSciNet  Google Scholar 

  8. Cao, D., Dai, W., Qin, G.: Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians. Trans. Am. Math. Soc. 374(7), 4781–4813 (2021)

    Article  MathSciNet  Google Scholar 

  9. Case, J., Chang, S.-Y.A.: On fractional GJMS operators. Commun. Pure Appl. Math. 69(6), 1017–1061 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chang, S.-Y.A., González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)

    Article  MathSciNet  Google Scholar 

  11. Chang, S.-Y.A., Yang, P.C.: On uniqueness of solutions of \(n\)-th order differential equations in conformal geometry. Math. Res. Lett. 4, 91–102 (1997)

    Article  MathSciNet  Google Scholar 

  12. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3), 615–622 (1991)

    Article  MathSciNet  Google Scholar 

  13. Chen, W., Li, C.: On Nirenberg and related problems–a necessary and sufficient condition. Commun. Pure Appl. Math. 48, 657–667 (1995)

    Article  Google Scholar 

  14. Chen, W., Li, C., Li, Y.: A direct method of moving planes for the fractional Laplacian. Adv. Math. 308, 404–437 (2017)

    Article  MathSciNet  Google Scholar 

  15. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    Article  MathSciNet  Google Scholar 

  16. Chen, W., Li, Y., Zhang, R.: A direct method of moving spheres on fractional order equations. J. Funct. Anal. 272(10), 4131–4157 (2017)

    Article  MathSciNet  Google Scholar 

  17. Cingolani, S., Weth, T.: On the planar Schrödinger-Poisson system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(1), 169–197 (2016)

  18. Dai, W., Hu Y., Liu, Z.: Sharp reversed Hardy-Littlewood-Sobolev inequality with extended kernel, preprint, arXiv:2006.03760

  19. Dai, W., Liu, Z., Qin, G.: Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell type equations. SIAM J. Math. Anal. 53(2), 1379–1410 (2021)

    Article  MathSciNet  Google Scholar 

  20. Dai, W., Peng, S., Qin, G.: Liouville type theorems, a priori estimates and existence of solutions for non-critical higher order Lane-Emden-Hardy equations. J. Anal. Math. arXiv:1808.10771

  21. Dai, W., Qin, G.: Classification of nonnegative classical solutions to third-order equations. Adv. Math. 328, 822–857 (2018)

    Article  MathSciNet  Google Scholar 

  22. Dai, W., Qin, G.: Liouville type theorems for fractional and higher order Hénon-Hardy type equations via the method of scaling spheres. Int. Math. Res. Not. (IMRN), 2022, 70 pp, https://doi.org/10.1093/imrn/rnac079

  23. Dai, W., Qin, G.: Liouville type theorem for critical order Hénon-Lane-Emden type equations on a half space and its applications. J. Funct. Anal. 281(10) (2021) Paper No. 109227

  24. Dai, W., Qin, G.: Classification of solutions to conformally invariant systems with mixed order and exponentially increasing or nonlocal nonlinearity, preprint. arXiv:2108.07166

  25. Dou, J., Zhu, M.: Sharp Hardy-Littlewood-Sobolev inequality on the upper half space. Int. Math. Res. Not. IMRN 3, 651–687 (2015)

    Article  MathSciNet  Google Scholar 

  26. Frank, R.L., König, T., Tang, H.: Classification of solutions of an equation related to a conformal \(\log \) Sobolev inequality. Adv. Math. 375, 107395 (2020)

    Article  MathSciNet  Google Scholar 

  27. Frank, R.L., Lieb, E.H.: A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality. In: Spectral Theory, Function Spaces and Inequalities, Oper. Theory Adv. Appl., vol. 219, pp. 55-67. Springer, Basel (2012)

  28. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  29. Guo, Y., Peng, S.: Symmetry and monotonicity of nonnegative solutions to pseudo-relativistic Choquard equations. Z. Angew. Math. Phys. 72, 120 (2021). https://doi.org/10.1007/s00033-021-01551-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Graham, C., Jenne, R., Mason, L., Sparling, G.: Conformally invariant powers of the Laplacian. I. Existence. J. Lond. Math. Soc. 46(3), 557–565 (1992)

    Article  MathSciNet  Google Scholar 

  31. Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. 16(6), 1111–1171 (2014)

    Article  MathSciNet  Google Scholar 

  32. Juhl, A.: Explicit formulas for GJMS-operators and \(Q\)-curvatures. Geom. Funct. Anal. 23(4), 1278–1370 (2013)

    Article  MathSciNet  Google Scholar 

  33. Kulczycki, T.: Properties of Green function of symmetric stable processes. Probab. Math. Stat. 17, 339–364 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. , Ann. of Math. (2) 118, 349–374 (1983)

  35. Lin, C.S.: A classification of solutions of a conformally invariant fourth order equation in \({\mathbb{R}}^{n}\). Comment. Math. Helv. 73, 206–231 (1998)

    Article  MathSciNet  Google Scholar 

  36. Li, Y.Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. European Math. Soc. 6, 153–180 (2004)

    Article  MathSciNet  Google Scholar 

  37. Li, Y.Y., Zhang, L.: Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. J. Anal. Math 90, 27–87 (2003)

    Article  MathSciNet  Google Scholar 

  38. Martinazzi, L.: Classification of solutions to the higher order Liouville’s equation on \({\mathbb{R}}^{2m}\). Math. Z. 263(2), 307–329 (2009)

    Article  MathSciNet  Google Scholar 

  39. Ngô, Q.A.: Classification of entire solutions of \((-\Delta )^{N}u+u^{-(4N-1)}=0\) with exact linear growth at infinity in \({\mathbb{R}}^{2N-1}\). Proc. Am. Math. Soc. 146(6), 2585–2600 (2018)

    Article  Google Scholar 

  40. Paneitz, S.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, preprint, http://wwww.emis.de/journals (1983)

  41. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  Google Scholar 

  42. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)

    Article  MathSciNet  Google Scholar 

  43. Xu, X.: Exact solutions of nonlinear conformally invariant integral equations in \({\mathbb{R}}^{3}\). Adv. Math. 194, 485–503 (2005)

    Article  MathSciNet  Google Scholar 

  44. Yu, X.: Classification of solutions for some elliptic system, preprint (2021)

  45. Zhu, N.: Classification of solutions of a conformally invariant third order equation in \({\mathbb{R}}^{3}\). Commun. Partial. Differ. Equ. 29, 1755–1782 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their careful reading and valuable comments and suggestions that improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolong Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuxia Guo was supported by NSFC (No. 12031015). Shaolong Peng is supported by the NSFC (No. 11971049)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Peng, S. Classification of Solutions to Mixed Order Conformally Invariant Systems in \({\mathbb {R}}^2\). J Geom Anal 32, 178 (2022). https://doi.org/10.1007/s12220-022-00916-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00916-0

Keywords

Mathematics Subject Classification

Navigation