Skip to main content
Log in

Sobolev Mapping of Some Holomorphic Projections

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Sobolev irregularity of the Bergman projection on a family of domains containing the Hartogs triangle is shown. On the Hartogs triangle itself, a sub-Bergman projection is shown to satisfy better Sobolev norm estimates than its Bergman projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A version of this also holds in several variables. See, e.g., [3, 7, 22] for a statement of the result, as well as elementary proofs for \(p=2\). For general p, see [15].

References

  1. Barrett, D., Şahutoğlu, S.: Irregularity of the Bergman projection on worm domains in \({\mathbb{C}}^n\). Michigan Math. J. 61(1), 187–198 (2012)

    Google Scholar 

  2. Barrett, D.E.: Irregularity of the Bergman projection on a smooth bounded domain in \({ C}^{2}\). Ann. Math. 119(2), 431–436 (1984)

    Google Scholar 

  3. Barrett, D.E.: Regularity of the Bergman projection and local geometry of domains. Duke Math. J. 53(2), 333–343 (1986)

    Google Scholar 

  4. Barrett, D.E.: Behavior of the Bergman projection on the Diederich-Fornæss worm. Acta Math. 168(1–2), 1–10 (1992)

    Google Scholar 

  5. Bell, S., Ligocka, E.: A simplification and extension of Fefferman’s theorem on biholomorphic mappings. Invent. Math. 57, 283–289 (1980)

    Google Scholar 

  6. Bell, S.R.: Biholomorphic mappings and the \(\bar{\partial }\)-problem. Ann. Math. 114(1), 103–113 (1981)

    Google Scholar 

  7. Boas, H.P.: The Szegő projection: Sobolev estimates in regular domains. Trans. Am. Math. Soc. 300(1), 109–132 (1987)

    Google Scholar 

  8. Boas, H.P., Straube, E.J.: Sobolev estimates for the \(\overline{\partial }\)-Neumann operator on domains in \({ C}^n\) admitting a defining function that is plurisubharmonic on the boundary. Math. Z. 206(1), 81–88 (1991)

    Google Scholar 

  9. Boas, H.P., Straube, E.J.: Global regularity of the \(\overline{\partial }\)-Neumann problem: a survey of the \(L^2\)-Sobolev theory. In: Several complex variables (Berkeley, CA, 1995–1996), vol. 37 of Math. Sci. Res. Inst. Publ. Cambridge Univ. Press, Cambridge, pp. 79–111 (1999)

  10. Chakrabarti, D., Edholm, L.D., McNeal, J.D.: Duality and approximation of Bergman spaces. Adv. Math. 341, 616–656 (2019)

    Google Scholar 

  11. Chakrabarti, D., Zeytuncu, Y.: \({L}^p\) mapping properties of the Bergman projection on the Hartogs triangle. Proc. Am. Math. Soc. 144(4), 1643–1653 (2016)

    Google Scholar 

  12. Charpentier, P., Dupain, Y.: Estimates for the Bergman and Szegö projections on pseudoconvex domains of finite type with locally diagonalizable Levi form. Publ. Math. 50(2), 413–446 (2006)

    Google Scholar 

  13. Chen, L.: The \(L^p\) boundedness of the Bergman projection for a class of bounded Hartogs domains. J. Math. Anal. Appl. 448(1), 598–610 (2017)

    Google Scholar 

  14. Chen, L.: Weighted Sobolev regularity of the Bergman projection on the Hartogs triangle. Pac. J. Math. 288, 307–318 (2017)

    Google Scholar 

  15. Detraz, J.: Classes de Bergman de fonctions harmoniques. Bull. Soc. Math. France 109, 259–268 (1981)

    Google Scholar 

  16. Diederich, K., Fornæss, J.E.: Pseudoconvex domains: an example with nontrivial Nebenhülle. Math. Ann. 225(3), 275–292 (1977)

    Google Scholar 

  17. Duren, P., Schuster, A.: BergmanSpaces. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2004)

    Google Scholar 

  18. Edholm, L.D.: Bergman theory of certain generalized Hartogs triangles. Pac. J. Math. 284(2), 327–342 (2016)

    Google Scholar 

  19. Edholm, L.D., McNeal, J.D.: The Bergman projection on fat Hartogs triangles: \({L}^p\) boundedness. Proc. Am. Math. Soc. 144(5), 2185–2196 (2016)

    Google Scholar 

  20. Edholm, L.D., McNeal, J.D.: Bergman subspaces and subkernels: degenerate \({L}^p\) mapping and zeroes. J. Geom. Anal. 27(4), 2658–2683 (2017)

    Google Scholar 

  21. Forelli, F., Rudin, W.: Projections on spaces of holomorphic functions in balls. Ind. Univ. Math. J. 24, 593–602 (1974)

    Google Scholar 

  22. Herbig, A.-K., McNeal, J.: A smoothing property of the Bergman projection. Math. Ann. 354(2), 427–449 (2012)

    Google Scholar 

  23. Koenig, K.D.: On maximal Sobolev and Hölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian. Am. J. Math. 124(1), 129–197 (2002)

    Google Scholar 

  24. Kohn, J.J.: Quantitative estimates for global regularity. In: Analysis and geometry in several complex variables (Katata, 1997), Trends Math. Birkhäuser Boston, Boston, MA, pp. 97–128 (1999)

  25. McNeal, J.D.: Boundary behavior of the Bergman kernel function in \({ C}^2\). Duke Math. J. 58(2), 499–512 (1989)

    Google Scholar 

  26. McNeal, J.D.: Local geometry of decoupled pseudoconvex domains. In: Complex Analysis (Wuppertal, 1991), Aspects Math., E17. Vieweg, Braunschweig, pp. 223–230 (1991)

  27. McNeal, J.D.: Estimates on the Bergman kernels of convex domains. Adv. Math. 109(1), 108–139 (1994)

    Google Scholar 

  28. McNeal, J.D., Stein, E.M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73(1), 177–199 (1994)

    Google Scholar 

  29. McNeal, J.D., Stein, E.M.: The Szegö projection on convex domains. Math. Z. 224(4), 519–553 (1997)

    Google Scholar 

  30. Nagel, A., Rosay, J.-P., Stein, E.M., Wainger, S.: Estimates for the Bergman and Szego kernels in \({ C}^2\). Ann. Math. 129(1), 113–149 (1989)

    Google Scholar 

  31. Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains. Duke Math. J. 44(3), 695–704 (1977)

    Google Scholar 

  32. Rudin, W.: Function Theory in the Unit Ball in \({\mathbb{C}}^n\). Grundlehren der Mathematischen Wissenschaften, vol. 241. Springer, New York (1980)

    Google Scholar 

  33. Zaharjuta, V., Judovic, V.: The general form of a linear functional on \({H}_p^{\prime }\). Uspekhi Mat. Nauk. 19(2), 139–142 (1964)

    Google Scholar 

  34. Zeytuncu, Y.: \({L}^p\) regularity of weighted Bergman projections. Trans. Am. Math. Soc. 365(6), 2959–2976 (2013)

    Google Scholar 

  35. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics, vol. 226. Springer, New York (2005)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Erwin Schrödinger Institute, Vienna for providing them a fruitful environment for collaboration during a December 2018 workshop. The first author also thanks Texas A&M at Qatar for hosting the stimulating workshop Analysis and Geometry in Several Complex Variables III in January 2019. The authors are also grateful to the two anonymous referees, whose comments improved the mathematical and expository content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. McNeal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edholm, L.D., McNeal, J.D. Sobolev Mapping of Some Holomorphic Projections. J Geom Anal 30, 1293–1311 (2020). https://doi.org/10.1007/s12220-019-00345-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00345-6

Keywords

Mathematics Subject Classification

Navigation