We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Mean Curvature Flow Solitons in the Presence of Conformal Vector Fields

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we introduce and study a notion of mean curvature flow soliton in Riemannian ambient spaces general enough to encompass target spaces of constant sectional curvature, Riemannian products or, in increasing generality, warped product spaces. As expected, our definition is motivated by the self-similarity of certain special solutions of the mean curvature flow with respect to the flow generated by a distinguished vector field on the target manifold. Our approach allows us to identify some natural geometric quantities that satisfy elliptic equations or differential inequalities in a simple and manageable form for which the machinery of weak maximum principles is valid. The latter is one of the main tools we apply to derive several new characterizations and rigidity results for mean curvature flow solitons that extend to our much more general setting known properties, for instance, in Euclidean space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V., Sario, L.: Riemann Surfaces. Princeton Mathematical Series, vol. 26. Princeton University Press, Princeton (1960)

    Google Scholar 

  2. Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics. Springer, Cham (2016)

    Google Scholar 

  3. Alías, L.J., Miranda, J.F.R., Rigoli, M.: A new open form of the weak maximum principle and geometric applications. Commun. Anal. Geom. 24(1), 1–43 (2016)

    Google Scholar 

  4. Altschuler, S.J., Wu, L.F.: Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc. Var. Partial Differ. Equ. 2, 101–111 (1994)

    Google Scholar 

  5. Barta, J.: Sur la vibration fundamentale d’une membrane. C. R. Acad. Sci. 204, 472–473 (1937)

    Google Scholar 

  6. Bessa, G.P., Pessoa, L., Rigoli, M.: Vanishing theorems, higher order mean curvatures and index estimates for self shrinkers. Israel J. Math. 226, 703–736 (2018)

    Google Scholar 

  7. Bianchini, B., Mari, L., Rigoli, M.: On some aspects of oscillation theory and geometry. Mem. Am. Math. Soc. 225(1056), 195 (2013)

    Google Scholar 

  8. Cao, H.-D., Li, H.: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. Calc. Var. Partial Differ. Equ. 46(3–4), 879–889 (2013)

    Google Scholar 

  9. Cao, H.-D., Zhou, D.: On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85(2), 175–185 (2010)

    Google Scholar 

  10. Catino, G., Mastrolia, P., Monticelli, D., Rigoli, M.: Analytic and geometric properties of generic Ricci solitons. Trans. Am. Math. Soc. 368(11), 7533–7549 (2016)

    Google Scholar 

  11. Cheng, Q.-M., Peng, Y.: Complete self-shrinkers of the mean curvature flow. Calc. Var. Partial Differ. Equ. 52, 497–506 (2015)

    Google Scholar 

  12. Cheng, X., Mejia, T., Zhou, D.: Stability and compactness for complete f-minimal surfaces. Trans. Am. Math. Soc. 367(6), 4041–4059 (2015)

    Google Scholar 

  13. Clutterbuck, J., Schnürer, O.C., Schulze, F.: Stability of translating solutions to mean curvature flow. Calc. Var. Partial Differ. Equ. 29(3), 281–293 (2007)

    Google Scholar 

  14. Colding, T., Minicozzi II, W.P.: Generic mean curvature flow I: Generic singularities. Ann. Math. (2) 175(2), 755–833 (2012)

    Google Scholar 

  15. Colding, T., Ilmanen, T., Minicozzi, W.P., White, B.: The round sphere minimizes entropy among closed self-shrinkers. J. Differ. Geom. 95(1), 53–69 (2013)

    Google Scholar 

  16. Colding, T., Minicozzi II, W.P., Pedersen, E.K.: Mean curvature flow. Bull. Am. Math. Soc. 52(2), 297–333 (2015)

    Google Scholar 

  17. Colding, T., Ilmanen, T., Minicozzi II, W.P.: Rigidity of generic singularities of mean curvature flow. Publ. Math. Inst. Hautes Études Sci. 121, 363–382 (2015)

    Google Scholar 

  18. Ding, Q., Xin, Y.L.: The rigidity theorems of self-shrinkers. Trans. Am. Math. Soc. 366, 5067–5085 (2014)

    Google Scholar 

  19. Ecker, K.: Regularity Theory for Mean Curvature Flow. Progress in Nonlinear Differential Equations and Their Application, vol. 57. Springer, New York (2004)

    Google Scholar 

  20. Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Commun. Pure Appl. Math. 33, 199–211 (1980)

    Google Scholar 

  21. Futaki, A., Hattori, K., Yamamoto, H.: Self-similar solutions to the mean curvature flows on Riemannian cone manifolds and special Lagrangians on toric Calabi-Yau cones. Osaka J. Math. 51, 1053–1079 (2014)

    Google Scholar 

  22. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Second edition. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224. Springer, Berlin (1983)

  23. Hoffman, D., Meeks III, W.H.: The strong halfspace theorem for minimal surfaces. Invent. Math. 101(2), 373–377 (1990)

    Google Scholar 

  24. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    Google Scholar 

  25. Huisken, G.: Local and global behaviour of hypersurfaces moving by mean curvature. In: Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proceedings of Symposia in Pure Mathematics 54. Part 1, pp. 175–191. American Mathematical Society, Providence (1993)

  26. Huisken, G., Sinestrari, C.: Mean curvature flow singularities for mean convex surfaces. Calc. Var. Partial Differ. Equ. 8(1), 1–14 (1999)

    Google Scholar 

  27. Hungerbühler, N., Smoczyk, K.: Soliton solutions for the mean curvature flow. Differ. Integr. Equ. 13(10–12), 1321–1345 (2000)

    Google Scholar 

  28. Ilmanen, T.: Elliptic regularization and partial regularity for motion by mean curvature. Mem. Am. Math. Soc. 108(520), (1994)

  29. Lawson Jr., H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187–197 (1969)

    Google Scholar 

  30. Le, N.Q., Sesum, N.: On the extension of the mean curvature flow. Math. Z. 267(3–4), 583–604 (2011)

    Google Scholar 

  31. Lira, J. H., Martín, F.: Translating solitons in Riemannian products. J. Differ. Equ. arXiv:1803.01410v1 (to appear)

  32. Lott, J.: Mean curvature flow in a Ricci flow background. Commun. Math. Phys. 313(2), 517–533 (2012)

    Google Scholar 

  33. Mari, L., Valtorta, D.: On the equivalence of stochastic completeness and Liouville and Khasminskii conditions in linear and nonlinear settings. Trans. Am. Math. Soc. 365(9), 4699–4727 (2013)

    Google Scholar 

  34. Martín, F., Savas-Halilaj, A., Smoczyk, K.: On the topology of translating solitons of the mean curvature flow. Calc. Var. Partial Differ. Equ. 54(3), 2853–2882 (2015)

    Google Scholar 

  35. Martín, F., Pérez-García, J., Savas-Halilaj, A., Smoczyk, K.: A characterization of the grim reaper cylinder. J. Reine Angew. Math. 746, 209–234 (2019)

    Google Scholar 

  36. Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48(2), 711–748 (1999)

    Google Scholar 

  37. Nguyen, X.H.: Coomplete embedded self-translating surfaces under mean curvature flow. J. Geom. Anal. 23, 1379–1426 (2013)

    Google Scholar 

  38. Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174(822), 99 (2005)

    Google Scholar 

  39. Pigola, S., Rigoli, M., Setti, A.G.: Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique. Progress in Mathematics, vol. 266. Birkhäuser Verlag, Basel (2008)

    Google Scholar 

  40. Rosales, C., Cañete, A., Bayle, V., Morgan, F.: On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differ. Equ. 31(1), 27–46 (2008)

    Google Scholar 

  41. Shahriyari, L.: Translating graphs by mean curvature flow. Geom. Dedicata 175(1), 57–64 (2015)

    Google Scholar 

  42. Yamamoto, H.: Ricci-mean curvature flows in gradient shrinking Ricci solitons. arXiv:1501.06256v1 (2017)

  43. Yau, S.T.: Submanifolds with constant mean curvature I. Am. J. Math. 96, 346–366 (1974)

    Google Scholar 

  44. Xin, Y.L.: Translating solitons of the mean curvature flow. Calc. Var. Partial Differ. Equ. 54(2), 1995–2016 (2015)

    Google Scholar 

  45. Wang, X.J.: Convex solutions to the mean curvature flow. Ann. Math. (2) 173(3), 1185–1239 (2011)

    Google Scholar 

  46. White, B.: The nature of singularities in mean curvature flow of mean-convex sets. J. Am. Math. Soc. 16(1), 123–138 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis J. Alías.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research of L.J. Alías is a result of the activity developed within the framework of the Programme in Support of Excellence Groups of the Región de Murcia, Spain, by Fundación Séneca, Science and Technology Agency of the Región de Murcia. Partially supported by MINECO/FEDER Project Reference MTM2015-65430-P and Fundación Séneca Project Reference 19901/GERM/15, Spain. J.H. de Lira is partially supported by CNPq Produtividade em Pesquisa Grant \(\#\) 302067/2014-0 and FUNCAP/CNPq/PRONEX Grant “Núcleo de Análise Geométrica e Aplicações” \(\#\) 09.01.00/11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alías, L.J., de Lira, J.H. & Rigoli, M. Mean Curvature Flow Solitons in the Presence of Conformal Vector Fields. J Geom Anal 30, 1466–1529 (2020). https://doi.org/10.1007/s12220-019-00186-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00186-3

Keywords

Mathematics Subject Classification

Navigation