Skip to main content
Log in

The Two-Dimensional Inverse Conductivity Problem

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article, we introduce a process to reconstruct a Riemann surface with boundary equipped with a linked conductivity tensor from its boundary and the Dirichlet–Neumann operator associated with this conductivity. When initial data come from a two- dimensional real Riemannian surface equipped with a conductivity tensor, this process recovers its conductivity structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. We think of a surface with boundary M as a dense open subset of an oriented two-dimensional real manifold with boundary \({\overline{M}}\) whose all connected components are bounded by pure one-dimensional real manifolds ; so the topological boundary bM of M is \({\overline{M}}\backslash M\) ; in the sequel \(\partial M\) is bM equipped with the natural orientation induced by M. A Riemann surface with boundary is a connected complex manifold of dimension 1 which is also a real surface with boundary.

  2. If we fix a point p in \({\overline{M}}\), some coordinates \(\left( x,y\right) \) around p and we set as in [29] \(\left( \xi ,\eta \right) =\left( \mathrm{{d}}y,-\mathrm{{d}}x\right) \) then \(\sigma \left( \mathrm{{d}}x\right) =r\xi +t\eta \) and \(\sigma \left( \mathrm{{d}}y\right) =u\xi +s\eta \), for \(a=a_{x}\mathrm{{d}}x+a_{y}\mathrm{{d}}y\) and \(b=b_{x}\mathrm{{d}}x+b_{y}\mathrm{{d}}y\) in \(T_{p}{\overline{M}}\), \(\sigma _{p}\left( b\right) =\left( b_{x} r+b_{y}u\right) \xi +\left( b_{x}t+b_{y}s\right) \eta \) and

    $$\begin{aligned} a\wedge \sigma _{p}\left( b\right)&=\left( a_{x}\mathrm{{d}}x+a_{y}\mathrm{{d}}y\right) \wedge \left[ \left( b_{x}r+b_{y}u\right) \mathrm{{d}}y-\left( b_{x}t+b_{y}s\right) \mathrm{{d}}x\right] \\&=\left( ra_{x}b_{x}+ua_{x}b_{y}+ta_{y}b_{x}+sb_{x}b_{y}\right) \mathrm{{d}}x\wedge \mathrm{{d}}y. \end{aligned}$$
  3. Since \(B^{-}\cap \delta =\varnothing \), \(B^{-}=\left( B^{-}\cap Y\right) \cup \left( B^{-}\backslash {\overline{Y}}\right) \). \(B^{-}\cap Y\) is an open subset \(B^{-}\) because by construction, \(B^{-} \subset {\mathrm{Reg\,}}{\overline{Y}}\cap {\mathrm{Reg\,}}\overline{Y^{\prime }}\). It is non-empty by hypothesis. Hence \(B^{-}=B^{-}\cap Y\subset Y\).

References

  1. Agaltsov, A., Henkin, G.: Explicit reconstruction of Riemann surface with given boundary in complex projective space. J. Geom. Anal. 25(4), 2450–2473 (2015)

    Article  MathSciNet  Google Scholar 

  2. Ahlfors, L.V., Sario, L.: Riemann Surfaces. Princeton Mathematical Series, vol. 26. Princeton University Press, Princeton, NJ (1960)

    Book  Google Scholar 

  3. Andreotti, A., Hill, C.D.: E. E. Levi convexity and the Hans Lewy problem. Part I. Ann. Sc. Norm. Super. Pisa 26(2), 325–363 (1972)

    MATH  Google Scholar 

  4. Andreotti, A., Hill, C.D.: E. E. Levi convexity and the Hans Lewy problem. Part II. Ann. Sc. Norm. Super. Pisa 28(4), 747–806 (1972)

    MATH  Google Scholar 

  5. Astala, Kari, Päivärinta, Lassi, Lassas, Matti: Calderón’s inverse problem for anisotropic conductivity in the plane. Commun. Partial Differ. Equ. 30(1–3), 207–224 (2005)

    Article  Google Scholar 

  6. Belishev, M.: The Calderon problem for two dimensional manifolds by the BC-method. SIAM J. Math. Anal. 35(1), 172–182 (2003)

    Article  MathSciNet  Google Scholar 

  7. Belishev, M., Sharafutdinov, V.: Dirichlet to Neumann operator on differential forms. Bull. Sci. Math. 132(2), 128–145 (2008)

    Article  MathSciNet  Google Scholar 

  8. Collion, S.: Transformation d’Abel et formes différentielles algébriques. C. R. Acad. Sci. Paris Sér. I Math. 323(12), 1237–1242 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Demailly, J.-P.: Complex analytic and differential geometry. https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

  10. Dolbeault, P., Henkin, G.: Chaînes holomorphes de bord donné dans \(\mathbb{CP}^{n}\). Bull. Soc. Math. Fr. 125, 383–445 (1997)

    Article  Google Scholar 

  11. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  12. Gutarts, B.: The inverse boundary value problem for the two-dimensional elliptic equation in anisotropic media. J. Math. Stat. Allied Fields 1(1), HTML files (2007)

  13. Harvey, F., Lawson, H.B.: Boundaries of complex analytic varieties. I. Ann. Math. 102, 233–290 (1975)

    Article  MathSciNet  Google Scholar 

  14. Harvey, R.: Holomorphic chains and their boundaries. Proc. Symp. Pure Math. 30, 309–382 (1977)

    Article  MathSciNet  Google Scholar 

  15. Henkin, G.: The Abel–Radon Transform and Several Complex Variables. In: Blooms, T. et al. (eds.) Modern Methods in Complex Analysis (Princeton, NJ, 1992). Ann. of Math. Stud., vol. 137, pp. 223–275. Princeton Univ. Press, Princeton, NJ (1995)

  16. Henkin, G.: Abel-Radon Transform and Applications. The Legacy of Niels Henrik Abel, pp. 567–584. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Henkin, G., Michel, V.: On the explicit reconstruction of a Riemann surface from its Dirichlet–Neumann operator. Geom. Funct. Anal. 17(1), 116–155 (2007)

    Article  MathSciNet  Google Scholar 

  18. Henkin, G., Michel, V.: Inverse conductivity problem on Riemann surfaces. J. Geom. Anal. 18(4), 1033–1052 (2008)

    Article  MathSciNet  Google Scholar 

  19. Henkin, G., Michel, V.: Inverse Dirichlet-to-Neumann problem for nodal curves. Russ. Math. Surv. 67(6), 1069–1089 (2012)

    Article  MathSciNet  Google Scholar 

  20. Henkin, G., Michel, V.: Problème de Plateau complexe feuilleté. Phénomènes de Hartogs-Severi et Bochner pour des feuilletages CR singuliers. Bull. Soc. Math. Fr. 142(1), 95–126 (2014)

    Article  Google Scholar 

  21. Henkin, G., Michel, V.: Bishop–Runge approximations and inversion of the Riemann–Klein theorem. Math. Sb. 206(2), 149–174 (2015)

    Article  MathSciNet  Google Scholar 

  22. Henkin, G., Novikov, R.: On the reconstruction of conductivity of a bordered two-dimensional surface in \({\mathbb{R}}^3\) from electrical current measurements on its boundary. J. Geom. Anal. 21(3), 543–587 (2011)

    Article  MathSciNet  Google Scholar 

  23. Henkin, G., Santacesaria, M.: On an inverse problem for anisotropic conductivity in the plane. Inverse Probl. 26(9), 095011–095018 (2010)

    Article  MathSciNet  Google Scholar 

  24. Henkin, G., Santacesaria, M.: Gelfand–Calderón’s inverse problem for anisotropic conductivities on bordered surfaces in \({\mathbb{R}}^3\). Int. Math. Res. Not. IMRN 4, 781–809 (2012)

    Article  Google Scholar 

  25. Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements. Commun. Pure Appl. Math. 37(3), 289–298 (1984)

    Article  MathSciNet  Google Scholar 

  26. Kohn, R.V., Vogelius, M.: Identification of an unknown conductivity by means of measurements at the boundary. In: McLaughlin, D. (ed.) Inverse Problems (New York, 1983). SIAM-AMS Proc., vol. 14, Am. Math. Soc., Providence, RI, pp. 113–123 (1984)

  27. Lassas, M., Uhlmann, G.: On determining a Riemannian manifold from the Dirichlet-to-Neumann map. Ann. Sci. École Norm. Sup. (4) 34(5), 771–787 (2001)

    Article  MathSciNet  Google Scholar 

  28. Laurent-Thiébaut, C.: Formule des résidus et théoréme de plemelj un une variété de stein. Ph.D. thesis, Université Pierre et Marie Curie (1985)

  29. Lee, J., Uhlmann, G.: Determining anisotropic real-analytic conductivities by boundary measurements. Commun. Pure Appl. Math. 42(8), 1097–1112 (1989)

    Article  MathSciNet  Google Scholar 

  30. Nachman, A.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. (2) 143(1), 71–96 (1996)

    Article  MathSciNet  Google Scholar 

  31. Novikov, R.: A multidimensional inverse spectral problem for the equation \(-\Delta \psi +(v(x)-Eu(x))\psi =0\). Funktsional. Anal. Prilozh. 22(4), 11–22,96 (1988)

    MathSciNet  MATH  Google Scholar 

  32. Rosenlicht, M.: Generalized Jacobian varieties. Ann. Math. (2) 59, 505–530 (1954)

    Article  MathSciNet  Google Scholar 

  33. Sharafutdinov, V., Shonkwiler, C.: The complete Dirichlet-to-Neumann map for differential forms. J. Geom. Anal. 23(4), 2063–2080 (2013)

    Article  MathSciNet  Google Scholar 

  34. Sylvester, J.: An anisotropic inverse boundary value problem. Commun. Pure Appl. Math. 43, 201–232 (1990)

    Article  MathSciNet  Google Scholar 

  35. Taylor, M.E.: Partial Differential Equations II. Qualitative Studies of Linear Equations. Applied Mathematical Sciences, vol. 116, 1st edn. Springer, New York (2011)

    Book  Google Scholar 

  36. Varolin, Dror: Riemann Surfaces by Way of Complex Analytic Geometry. Graduate Studies in Mathematics, vol. 125. American Mathematical Society, Providence, RI (2011)

    MATH  Google Scholar 

  37. Wood, J.: A simple criterion for local hypersurfaces to be algebraic. Duke Math. J. 51(1), 235–237 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the referees for their careful reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Michel.

Additional information

In January 2016, my friend Gennadi Henkin, with whom I had worked for more than fifteen years, passed away. This paper, which is on a subject he brought, is dedicated to him. The numerous citations from the articles he authored show the depth of his mathematical thought.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, V. The Two-Dimensional Inverse Conductivity Problem. J Geom Anal 30, 2776–2842 (2020). https://doi.org/10.1007/s12220-018-00139-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-00139-2

Keywords

Mathematics Subject Classification

Navigation