Skip to main content
Log in

A Generalization of an Integrability Theorem of Darboux

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In his monograph “Systèmes Orthogonaux” (Darboux, in Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910) Darboux stated three theorems providing local existence and uniqueness of solutions to first-order systems of the type

$$\begin{aligned} \partial _{x_i} u_\alpha (x)=f^\alpha _i(x,u(x)), \quad i\in I_\alpha \subseteq \{1,\dots ,n\}. \end{aligned}$$

For a given point \({\bar{x}}\in \mathbb {R}^n\) it is assumed that the values of the unknown \(u_\alpha \) are given locally near \({\bar{x}}\) along \(\{x\,|\, x_i={\bar{x}}_i \, \text {for each}\, i\in I_\alpha \}\). The more general of the theorems, Théorème III, was proved by Darboux only for the cases \(n=2\) and 3. In this work we formulate and prove a generalization of Darboux’s Théorème III which applies to systems of the form

$$\begin{aligned} {{\mathbf {r}}}_i(u_\alpha )\big |_x = f_i^\alpha (x, u(x)), \quad i\in I_\alpha \subseteq \{1,\dots ,n\} \end{aligned}$$

where \({\mathcal {R}}=\{{{\mathbf {r}}}_i\}_{i=1}^n\) is a fixed local frame of vector fields near \({\bar{x}}\). The data for \(u_\alpha \) are prescribed along a manifold \(\Xi _\alpha \) containing \({\bar{x}}\) and transverse to the vector fields \(\{{{\mathbf {r}}}_i\,|\, i\in I_\alpha \}\). We identify a certain Stable Configuration Condition (SCC). This is a geometric condition that depends on both the frame \({\mathcal {R}}\) and on the manifolds \(\Xi _\alpha \); it is automatically met in the case considered by Darboux. Assuming the SCC and the relevant integrability conditions are satisfied, we establish local existence and uniqueness of a \(C^1\)-solution via Picard iteration for any number of independent variables n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In [11] it has been shown, by involving a rather technical machinery, that the Cartan–Kähler theorem can be applied to systems of a certain special type (involutive, hyperbolic) in the \(C^{\infty }\) setting.

  2. “Pour établier cette importante proposition, sans employer un trop grand luxe de notations, nous nous bornerons au cas de deux et de trois variables indépendantes, qui suffira d’ailleurs pour les applications que nous avons en vue.” [4] p. 336.

References

  1. Benfield, M.: Some geometric aspects of hyperbolic conservation laws. PhD thesis, NSCU (2016). https://repository.lib.ncsu.edu/handle/1840.16/11372

  2. Benfield, M., Jenssen, H.K., Kogan, I.A.: On two integrability theorems of Darboux. Unpublished manuscript (2017). arxiv:1709.07473

  3. Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A.: Exterior Differential Systems. Mathematical Sciences Research Institute Publications, vol. 18. Springer, New York (1991). MR1083148 (92h:58007)

    Google Scholar 

  4. Darboux, G.: Leçons sur les systèmes orthogonaux et les coordonnées curvilignes. Gauthier-Villars, Paris (1910)

    MATH  Google Scholar 

  5. Hartman, P.: Ordinary Differential Equations, Classics in Applied Mathematics, vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA 2002. Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e:34002)]; With a foreword by Peter Bates. MR1929104

  6. Ivey, T.A., Landsberg, J.M.: Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems. Graduate Studies in Mathematics, vol. 61, American Mathematical Society, Providence, RI (2003). MR2003610 (2004g:53002)

    Google Scholar 

  7. Kharibegashvili, S.: Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems. Mem. Differ. Equ. Math. Phys. 4 (1995), 127 (English, with English and Georgian summaries). MR1415805

  8. Lang, S.: Introduction to Differentiable Manifolds, 2nd edn. Universitext, Springer, New York (2002). MR1931083

  9. Lieberstein, H.M.: Theory of Partial Differential Equations. Mathematics in Science and Engineering, vol. 93. Academic Press, New York (1972). MR0355280

  10. Spivak, M.: A Comprehensive Introduction to Differential Geometry. vol. I, 2nd ed. Publish or Perish Inc., Wilmington (1979). MR532830 (82g:53003a)

  11. Yang, D.: Involutive hyperbolic differential systems. Mem. Am. Math. Soc. 68(370), xii+93 (1987). MR897707

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF Grants DMS-1311353 (PI: Jenssen) and DMS-1311743 (PI: Kogan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina A. Kogan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benfield, M., Jenssen, H.K. & Kogan, I.A. A Generalization of an Integrability Theorem of Darboux. J Geom Anal 29, 3470–3493 (2019). https://doi.org/10.1007/s12220-018-00119-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-00119-6

Keywords

Mathematics Subject Classification

Navigation