Skip to main content
Log in

Eigenvalue Counting Function for Robin Laplacians on Conical Domains

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the discrete spectrum of the Robin Laplacian \(Q^{\Omega }_\alpha \) in \(L^2(\Omega )\), \(u\mapsto -\Delta u, \quad D_n u=\alpha u \text { on }\partial \Omega \), where \(D_n\) is the outer unit normal derivative and \(\Omega \subset {\mathbb {R}}^{3}\) is a conical domain with a regular cross-section \(\Theta \subset {\mathbb {S}}^2\), n is the outer unit normal, and \(\alpha >0\) is a fixed constant. It is known from previous papers that the bottom of the essential spectrum of \(Q^{\Omega }_\alpha \) is \(-\alpha ^2\) and that the finiteness of the discrete spectrum depends on the geometry of the cross-section. We show that the accumulation of the discrete spectrum of \(Q^\Omega _\alpha \) is determined by the discrete spectrum of an effective Hamiltonian defined on the boundary and far from the origin. By studying this model operator, we prove that the number of eigenvalues of \(Q^{\Omega }_\alpha \) in \((-\infty ,-\alpha ^2-\lambda )\), with \(\lambda >0\), behaves for \(\lambda \rightarrow 0\) as

$$\begin{aligned} \dfrac{\alpha ^2}{8\pi \lambda } \int _{\partial \Theta } \kappa _+(s)^2\mathrm {d}s +o\left( \frac{1}{\lambda }\right) , \end{aligned}$$

where \(\kappa _+\) is the positive part of the geodesic curvature of the cross-section boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agricola, I., Friedrich, T.: Global Analysis: Differential Forms in Analysis, Geometry and Physics. Graduate Studies in Mathematics, vol. 52. American Mathematical Society, Providence (2002)

    Book  MATH  Google Scholar 

  2. Behrndt, J., Exner, P., Lotoreichik, V.: Schrödinger operators with \(\delta \)-interactions supported on conical surfaces. J. Phys. A 47(35), 355202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Briet, P., Kovařík, H., Raikov, G., Soccorsi, E.: Eigenvalue asymptotics in a twisted waveguide. Commun. PDE 34, 818–836 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Briet, Ph, Kovařík, H., Raikov, G., Soccorsi, E.: Spectral properties of a magnetic quantum Hamiltonian on a strip. Asymptot. Anal. 58, 127–155 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bruneau, V., Miranda, P., Raikov, G.: Dirichlet and Neumann eigenvalues for half-plane magnetic Hamiltonians. Rev. Math. Phys. 26, 1450003 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruneau, V., Miranda, P., Raikov, G.: Discrete spectrum of quantum Hall effect Hamiltonians I. Monotone edge potential. J. Spectr. Theory 1, 237–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruneau, V., Popoff, N.: On the negative spectrum of the Robin Laplacian in corner domains. Anal. PDE (to appear). Preprint arXiv:1511.08155 (2015)

  8. Bryan, P., Louie, J.: Classification of convex ancient solutions to curve shortening flow on the sphere. J. Geom. Anal. (to appear). Preprint arXiv:1408.5523

  9. Dauge, M., Ourmières-Bonafos, T., Raymond, N.: Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Commun. Pure Appl. Anal. 14, 1239–1258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Exner, P., Lotoreichik, V.: A spectral isoperimetric inequality for cones. Preprint arXiv:1512.01970 (2015)

  11. Exner, P., Tater, M.: Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A 43, 474023 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fernández, C., Raikov, G.D.: On the singularities of the magnetic spectral shift function at the Landau levels. Ann. Henri Poincaré 5, 381–403 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hainzl, C., Seiringer, R.: Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy. Math. Nachr. 283, 489–499 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Helffer, B., Kachmar, A.: Eigenvalues for the Robin Laplacian in Domains with Variable Curvature. Transactions of the American Mathematical Society, New York (2015)

    MATH  Google Scholar 

  15. Kachmar, A., Keraval, P., Raymond, N.: Weyl formulae for the Robin Laplacians in the semiclassical limit. Preprint arXiv:1602.06179

  16. Lotoreichik, V., Ourmières-Bonafos, T.: On the bound states of Schrödinger operators with \(\delta \)-interactions on conical surfaces. Preprint arXiv:1510.05623 (2015)

  17. Lungenstrass, T., Raikov, G.: Local spectral asymptotics for metric perturbations of the Landau Hamiltonian. Anal. PDE 8, 1237–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miranda, P., Raikov, G.: Discrete spectrum of quantum Hall effect Hamiltonians II. Periodic edge potential. Asymptot. Anal. 79, 325–345 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Ourmières-Bonafos, T., Pankrashkin, K.: Discrete spectrum of interactions concentrated near conical surfaces. Preprint arXiv:1612.01798

  20. Pankrashkin, K.: On the discrete spectrum of Robin Laplacians in conical domains. Math. Model. Nat. Phenom. (to appear), preprint arXiv:1507.08980

  21. Pankrashkin, K., Popoff, N.: Mean curvature bounds and eigenvalues of Robin Laplacians. Calc. Var. Partial Differ. Equ. 54, 1947–1961 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pankrashkin, K., Popoff, N.: An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter. J. Math. Pures Appl. (to appear), preprint arXiv:1502.00877

  23. Radó, T.: The isoperimetric inequality on the sphere. Am. J. Math. 57, 765–770 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  24. Raikov, G.D., Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips. Commun. PDE 15 (1990), 407–434; Errata: Comm. PDE 18 (1993), 1977–1979

  25. Raikov, G.D.: Spectral Shift Function for Magnetic Schrödinger Operators. Mathematical Physics of Quantum Mechanics, Lecture Notes in Physics, vol. 690. Springer, Berlin (2006)

    MATH  Google Scholar 

  26. Raikov, G.D.: Low energy asymptotics of the spectral shift function for Pauli operators with nonconstant magnetic fields. Publ. Res. Inst. Math. Sci. 46, 565–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Raikov, G.D., Warzel, S.: Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials. Rev. Math. Phys. 14, 1051–1072 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Raikov, G.: Discrete spectrum of Schrödinger operators with oscillating decaying potentials. Preprint arXiv:1501.06865

  29. Raikov, G.: Spectral asymptotics for waveguides with perturbed periodic twisting. J. Spectral Theory (to appear), preprint arXiv:1407.0757

  30. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, Harcourt Brace Jovanovich Publishers, New York (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Popoff.

Appendix 1: Proof of Proposition 7

Appendix 1: Proof of Proposition 7

In this section, we study two 1D problems on \(\big (0,\delta (r)\big )\) with Robin condition (with parameter r) at 0 and with Dirichlet (resp. Neumann) condition at \(\delta (r)\) in order to prove Proposition 7. The only novelty lies on the \(L^2\)-estimate of the r-derivative of the ground state, but for the sake of completeness we provide the proofs of all the statements.

Let us look for eigenvalues of the form \(E^{D/N}=-(k^{D/N}r)^2\), \(k^{D/N}>0\), then the boundary condition \(u(\delta )=0\) (respectively, \(u'(\delta )=0\)) gives the following forms for the positive normalized eigenfunctions:

$$\begin{aligned} \psi ^{D}(t)=C^{D}(r)\sinh \big (k^{D}r(\delta -t)\big ) \ \ \text{ and } \ \ \psi ^{N}(t)=C^{N}(r)\cosh \big (k^{N}r(\delta -t)\big ), \end{aligned}$$
(33)

where \(C^{D/N}(r)>0\) are normalization factors. The second boundary condition gives then

$$\begin{aligned} k^{D}\coth (k^{D}r\delta )=1 \ \ \text{ and } \ \ k^{N}\tanh (k^{N}r\delta )=1 \end{aligned}$$
(34)

which can be rewritten as \(F^{D/N}(kr\delta )=r\delta \) with \(F^{D}(t)=t\coth t\) and \(F^{N}(t)=t\tanh t\). The function \(F^{D}\) (respectively, \(F^{N}\)) is a bijection between \((0,+\infty )\) and \((1,+\infty )\) (respectively, \((0,+\infty )\)); hence, there exists a unique solution if \(r\delta >1\) (respectively, \(r\delta >0\)), which holds, in particular, for large r. Furthermore, as both \(\coth t\) and \(\tanh t\) are bounded and tend to 1 at \(+\infty \), it follows first that \(k^{D/N}r\delta \) tends to \(+\infty \) for large r, and then that \(k^{D/N}r\delta =r\delta +o(r\delta )\) for large r, i.e., \(k^{D/N}=1+o(1)\) and \(k^{D/N}r\delta \rightarrow +\infty \), and (34) gives \(k^{D/N}=1+{\mathcal {O}}(e^{-2r\delta })\) implying the estimates (8). Taking the derivative of (34) with respect to r, we obtain

$$\begin{aligned} (k^{D/N})'(r)=\frac{b(\rho -1)k^{D/N} r^{-\rho }}{\mp \cosh (k^{D/N}r\delta )\sinh (k^{D/N}r\delta )+r\delta } ={\mathcal {O}}(r^{-\infty }), \quad r\rightarrow +\infty . \end{aligned}$$
(35)

Recall that \(C^{D/N}\) are normalization factors in (33), we get

$$\begin{aligned} C^{D/N}(r)^{-2}=G^{D/N}(2rk^{D/N}\delta ) \delta , \quad G^{D/N}(t):=\dfrac{1}{2}\Big (\dfrac{\sinh t}{t}\mp 1\Big ), \end{aligned}$$

which gives

$$\begin{aligned} \psi ^{D}(t)&=\delta ^{-1/2}G^{D}(2k^{D}r\delta )^{-1/2} \sinh (rkt),\\ \psi ^{N}(t)&=\delta ^{-1/2}G^{N}(2k^{N}r\delta )^{-1/2} \cosh (rkt). \end{aligned}$$

We have (we drop the indices D / N when the expressions are the same)

$$\begin{aligned} \partial _r(\delta ^{-1/2})= & {} \dfrac{\rho }{2r} \,\delta ^{-1/2},\quad \partial _r \big (G(2kr\delta )^{-1/2}\big )=-\dfrac{G'(2kr\delta )}{G(2kr\delta )}\,\partial _r(kr\delta )\cdot G(2kr\delta )^{-1/2},\\ \dfrac{(G^{D/N})'(t)}{G^{D/N}(t)}= & {} \dfrac{ t \cosh t - \sinh t}{t(\sinh t\mp t)}, \end{aligned}$$

hence, in both cases

$$\begin{aligned} \dfrac{G'(2kr\delta )}{G(2kr\delta )}={\mathcal {O}}(1), \quad r\rightarrow +\infty . \end{aligned}$$

Furthermore, using (35) (here again we drop the indices)

$$\begin{aligned} \partial _r(kr\delta )=k'\cdot (r\delta ) + k \cdot (r\delta )'={\mathcal {O}}(r^{-\rho }), \quad r\rightarrow +\infty . \end{aligned}$$

Therefore,

$$\begin{aligned} \left\{ \begin{aligned} \partial _r \psi ^{D}(t)={\mathcal {O}}(r^{-\rho }) \psi ^{D} - C^{D}(r)k^{D}t \cosh \big (rk^{D}(\delta -t)\big ) \\ \partial _r \psi ^{N}(t)={\mathcal {O}}(r^{-\rho }) \psi ^{N} - C^{N}(r)k^{N}t \sinh \big (rk^{N}(\delta -t)\big ) \end{aligned} \right. \end{aligned}$$

and

$$\begin{aligned} \Vert \partial _r \psi ^{D/N}\Vert ^2_{L^2(0,\delta )} \le {\mathcal {O}}(r^{-2\rho })+ {\mathcal {O}}(r^{-2\rho }) \dfrac{\sinh (2k^{D/N}r\delta )\pm 2k^{D/N}r\delta }{\sinh (2k^{D/N}r\delta )\mp 2k^{D/N}r\delta }={\mathcal {O}}(r^{-2\rho }). \end{aligned}$$

Finally,

$$\begin{aligned} \psi ^{D/N}(0)^2=2r k^{D/N} \dfrac{\cosh (2k^{D/N}r\delta )\mp 1}{\sinh (2k^{D/N}r\delta )\pm 2rk^{D/N}\delta } =2r\big (1+ {\mathcal {O}}(r\delta e^{-2r\delta })\big ) \end{aligned}$$

and

$$\begin{aligned} \psi ^{N}(\delta )^2=C^{N}(r)^{-2}= \dfrac{2k^{N}r}{\sinh (2k^{N}r\delta )+2k^{N}r\delta }={\mathcal {O}}(r^2\delta e^{-2r\delta }), \end{aligned}$$

and the proposition is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruneau, V., Pankrashkin, K. & Popoff, N. Eigenvalue Counting Function for Robin Laplacians on Conical Domains. J Geom Anal 28, 123–151 (2018). https://doi.org/10.1007/s12220-017-9813-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9813-4

Keywords

Mathematics Subject Classification

Navigation