Skip to main content
Log in

More Mixed Volume Preserving Curvature Flows

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We extend the results of McCoy (Calc Var Partial Differ Equ 24:131–154, 2005) to include several new cases where convex surfaces evolve to spheres under mixed volume preserving curvature flows, using recent results for unconstrained curvature flows and new regularity arguments in the constrained flow setting. We include results for speeds that are degree 1 homogeneous in the principal curvatures and indicate how, with sufficient curvature pinching conditions on the initial hypersurfaces, some results may be extended to speed homogeneous of degree \(\alpha >1\). In particular, these extensions require lower speed bounds that are obtained here without using estimates for equations of porous medium type, in contrast to most previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandroni, R., Sinestrari, C.: Evolution of hypersurfaces by powers of the scalar curvature. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9(3), 541–571 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Andrews, B.H.: Fully nonlinear parabolic equations in two space variables. arXiv:math/0402235

  3. Andrews, B.H.: Contraction of convex hypersurfaces in Euclidean space. Calc. Var. Partial Differ. Equ. 2(2), 151–171 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrews, B.H.: Harnack inequalities for evolving hypersurfaces. Math. Z. 217(2), 179–197 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andrews, B.H.: Motion of hypersurfaces by Gauss curvature. Pac. J. Math. 195(1), 1–34 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrews, B.H.: Volume-preserving anisotropic mean curvature flow. Indiana Univ. Math. J. 50(2), 783–827 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andrews, B.H.: Pinching estimates and motion of hypersurfaces by curvature functions. J. Reine Angew. Math. 608, 17–33 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Andrews, B.H.: Moving surfaces by non-concave curvature functions. Calc. Var. Partial Differ. Equ. 39(3–4), 649–657 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Andrews, B.H., McCoy, J.A.: Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature. Trans. Am. Math. Soc. 364, 3427–3447 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Andrews, B.H., McCoy, J.A., Zheng, Y.: Contracting convex hypersurfaces by curvature. Calc. Var. Partial Differ. Equ. 47(3–4), 611–665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Athanassenas, M., Kandanaarchchi, S.: Convergence of axially symmetric volume preserving mean curvature flow. Pac. J. Math. 259(1), 41–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cabezas-Rivas, E., Sinestrari, C.: Volume-preserving flow by powers of the \(m\)th mean curvature. Calc. Var. Partial Differ. Equ. 38(3–4), 441–469 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L.A.: Interior a priori estimates for solutions of fully non-linear equations. Ann. Math. 130, 189–213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cannon, J.R., Salman, M.: On a class of nonlinear nonclassical parabolic equations. Appl. Anal. 85(1–3), 23–44 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chow, B., Gulliver, R.: Aleksandrov reflection and geometric evolution equations I: the \(n\)-sphere and \(n\)-ball. Calc. Var. 4, 249–264 (1996)

    Article  MATH  Google Scholar 

  16. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hartley, D.: Motion by mixed volume preserving curvature functions near spheres. Pac. J. Math. 274(2), 437–450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hartman, P.: Ordinary Differential Equations. SIAM Classics in Applied Mathematics, 2nd edn. Birkhüaser, Boston (1982)

    Google Scholar 

  19. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huisken, G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35–48 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Krylov, N.V., Safonov, M.V.: A certain property of solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk 16(1981), 151–164 (1980). English, Math USSR Izv. 16(1981), 151–164

    MATH  Google Scholar 

  22. Li, G., Yu, L., Wu, C.: Curvature flow with a general forcing term in Euclidean spaces. J. Math. Anal. Appl. 353, 508–520 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lieberman, G.M.: Second Order Parabolic Partial Differential Equations. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  24. Lin, Y.-C., Tsai, D.-H.: On a simple maximum principle technique applied to equations on the circle. J. Differ. Equ. 245, 377–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  26. McCoy, J.A.: The surface area preserving mean curvature flow. Asian J. Math. 7(1), 7–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. McCoy, J.A.: The mixed volume preserving mean curvature flow. Math. Z. 246(1), 155–166 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. McCoy, J.A.: Mixed volume preserving curvature flows. Calc. Var. Partial Differ. Equ. 24, 131–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. McCoy, J.A.: Self-similar solutions of fully nonlinear curvature flows. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 10, 317–333 (2011)

    MathSciNet  MATH  Google Scholar 

  30. McCoy, J.A., Wheeler, G.E.: A classification theorem for Helfrich surfaces. Math. Ann. 357, 1485–1508 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. McCoy, J.A., Mofarreh, F.Y.Y., Wheeler, V.-M.: Fully nonlinear curvature flow of axially symmetric hypersurfaces. Nonlinear Differ. Equ. Appl. 10, 1–19 (2014)

    MATH  Google Scholar 

  32. Schulze, F.: Convexity estimates for flows by powers of the mean curvature. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5(2), 261–277 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Sinestrari, C.: Convex hypersurfaces evolving by volume preserving curvature flows. Calc. Var. 54(2), 261–277 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smoczyk, K.: Starshaped hypersurfaces and the mean curvature flow. Manuscripta Math. 95(2), 225–236 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tso, K.-S.: Deforming a hypersurface by its Gauss-Kronecker curvature. Commun. Pure Appl. Math. 38, 867–882 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Urbas, J.: An expansion of convex hypersurfaces. J. Differ. Geom. 33, 91–125 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was completed while the author was supported by DP150100375 of the Australian Research Council. The author is grateful to the Faculty of Engineering and Information Sciences at the University of Wollongong for the provision of a period of study leave that has also assisted in facilitating the completion of this article. Some of this work was carried out while the author was visiting the Centre for Mathematics and its Applications at the Australian National University; the author is grateful for its hospitality and useful discussions with Professor Ben Andrews, particularly his suggestions for the cases of higher homogeneity speeds. The author would also like to thank Professor Neil Trudinger for his interest in this work, Dr Glen Wheeler and Dr Valentina Wheeler for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. McCoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCoy, J.A. More Mixed Volume Preserving Curvature Flows. J Geom Anal 27, 3140–3165 (2017). https://doi.org/10.1007/s12220-017-9799-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9799-y

Keywords

Mathematics Subject Classification

Navigation