Skip to main content
Log in

Levi Harmonic Maps of Contact Riemannian Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study Levi harmonic maps, i.e., C solutions f:MM′ to \(\tau_{\mathcal{H}} (f) \equiv \operatorname{trace}_{g} ( \varPi_{\mathcal{H}}\beta_{f} ) = 0\), where (M,η,g) is an (almost) contact (semi) Riemannian manifold, M′ is a (semi) Riemannian manifold, β f is the second fundamental form of f, and \(\varPi_{\mathcal{H}} \beta_{f}\) is the restriction of β f to the Levi distribution \({\mathcal{H}} = \operatorname{Ker}(\eta)\). Many examples are exhibited, e.g., the Hopf vector field on the unit sphere S 2n+1, immersions of Brieskorn spheres, and the geodesic flow of the tangent sphere bundle over a Riemannian manifold of constant curvature 1 are Levi harmonic maps. A CR map f of contact (semi) Riemannian manifolds (with spacelike Reeb fields) is pseudoharmonic if and only if f is Levi harmonic. We give a variational interpretation of Levi harmonicity. Any Levi harmonic morphism is shown to be a Levi harmonic map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbassi, K.M.T., Calvaruso, G.: g-Natural contact metrics on unit tangent sphere bundles. Monatshefte Math. 151, 89–109 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baird, P., Wood, J.C.: Harmonic Morphisms Between Riemannian Manifolds. London Mathem. Society Monographs, vol. 29. Oxford Science Publications/Clarendon Press, Oxford (2003)

    Book  MATH  Google Scholar 

  3. Barletta, E.: Hörmander systems and harmonic morphisms. Ann. Sc. Norm. Super. Pisa 2(5), 379–394 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Barletta, E.: Subelliptic F-harmonic maps. Riv. Mat. Univ. Parma 2(7), 33–50 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Barletta, E., Dragomir, S.: Differential equations on contact Riemannian manifolds. Ann. Sc. Norm. Super. Pisa 30(1), 63–95 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Barletta, E., Dragomir, S., Urakawa, H.: Pseudoharmonic maps from non degenerate CR manifolds to Riemannian manifolds. Indiana Univ. Math. J. 50(2), 719–746 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barletta, E., Dragomir, S., Duggal, K.L.: Foliations in Cauchy–Riemann Geometry. Mathematical Surveys and Monographs, vol. 140. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  8. Barros, E., Romero, A.: Indefinite Kähler manifolds. Math. Ann. 261, 55–62 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bejancu, A., Duggal, K.L.: Real hypersurfaces of indefinite Kaehler manifolds. Int. J. Math. Math. Sci. 16, 545–556 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Math., vol. 203. Birkhäuser, Boston, Basel, Berlin (2002)

    Book  MATH  Google Scholar 

  11. Capursi, M.: Quasi-cosymplectic manifolds. Rev. Roum. Math. Pures Appl. 32, 27–35 (1987)

    MATH  MathSciNet  Google Scholar 

  12. Calvaruso, G., Perrone, D.: Contact pseudo-metric manifolds. Differ. Geom. Appl. 28, 615–634 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Centore, P.: Finsler Laplacians and minimal-energy maps. Int. J. Math. 11(1), 1–13 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dacko, P., Olszak, Z.: On almost cosymplectic (−1,μ,0)-spaces. Cent. Eur. J. Math. 3(2), 318–330 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Davidov, J.: Almost contact metric structures and twistor spaces. Houst. J. Math. 29(3), 639–673 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Dragomir, S.: On pseudohermitian immersions between strictly pseudoconvex CR manifolds. Am. J. Math. 117, 169–202 (1995)

    Article  MATH  Google Scholar 

  17. Dragomir, S., Lanconelli, E.: Subelliptic harmonic morphisms. Osaka J. Math. 46, 411–440 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Dragomir, S., Masamune, J.: Cauchy–Riemann orbifolds. Tsukuba J. Math. 26(2), 351–386 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Dragomir, S., Perrone, D.: On the geometry of tangent hyperquadric bundles: CR and pseudo harmonic vector fields. Ann. Glob. Anal. Geom. 30, 211–238 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dragomir, S., Petit, R.: Contact harmonic maps. Differ. Geom. Appl. 30(1), 65–84 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds. Progress in Math., vol. 246. Birkhäuser, Boston-Basel-Berlin (2006)

    MATH  Google Scholar 

  22. Dragomir, S., Tommasoli, A.: Harmonic maps of foliated Riemannian manifolds. Geom. Dedic. (2012). doi:10.1007/s10711-012-9723-3

    Google Scholar 

  23. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fino, A., Vezzoni, L.: Some results on cosymplectic manifolds. Geom. Dedic. 151, 41–58 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Folland, G.B., Stein, E.M.: Estimates for the \(\overline{\partial}_{b}\)-complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  26. Fuglede, B.: Harmonic morphisms between semi-Riemannian manifolds. Ann. Acad. Sci. Fenn. 21, 31–50 (1996)

    MATH  MathSciNet  Google Scholar 

  27. Goldberg, S.I., Yano, K.: Integrability of almost cosymplectic structures. Pac. J. Math. 31, 373–382 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gromov, M.: Foliated plateau problem, Part II: Harmonic maps of foliations. Geom. Funct. Anal. 1(3), 253–320 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ianuş, S.: Sulle varietà di Cauchy–Riemann. Rend. Accad. Sci. Fis. Mat. 39, 191–195 (1972)

    Google Scholar 

  30. Ianuş, S.: Geometrie diferenţială cu aplicaţii în teoria relativităţii. Editura Academiei Republicii Socialiste România, Bucureşti (1983)

  31. Ishihara, T.: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19, 215–229 (1979)

    MATH  MathSciNet  Google Scholar 

  32. Jerison, D., Lee, J.M.: Intrinsic CR normal coordinates and the CR Yamabe problem. J. Differ. Geom. 29, 303–343 (1989)

    MATH  MathSciNet  Google Scholar 

  33. Jost, J., Xu, C.-J.: Subelliptic harmonic maps. Trans. Am. Math. Soc. 350(11), 4633–4649 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kimura, M.: Sectional curvatures of holomorphic planes on a real hypersurface real hypersurface in P n(ℂ). Math. Ann. 276, 487–497 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kimura, M., Maeda, S.: On real hypersurfaces of a complex space. Math. Z. 202, 299–311 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry vol. I. Interscience, New York (1963). II, 1969

    MATH  Google Scholar 

  37. Konderak, J.J., Wolak, R.A.: Transversally harmonic maps between manifolds with Riemannian manifolds. Q. J. Math. 54(3), 335–354 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lichnerowicz, A.: Applications harmoniques et variétés kähleriennes. Symp. Math. 3, 341–402 (1978)

    Google Scholar 

  39. Ludden, G.D.: Submanifolds of cosymplectic manifolds. J. Differ. Geom. 4, 237–244 (1970)

    MATH  MathSciNet  Google Scholar 

  40. Nakauchi, N.: Regularity of minimizing p-harmonic maps into the sphere. Nonlinear Anal. 47, 1051–1057 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Niebergall, R., Ryan, P.J.: Real hypersurfaces in complex space forms. In: Cecil, T.E., Chern, S.S. (eds.) Tight and Taut Submanifolds. Math. Sci. Res. Inst. Publ., vol. 32, pp. 233–305. Cambridge Univ. Press, Cambridge (1997)

    Google Scholar 

  42. Olszak, Z.: On almost cosymplectic manifolds. Kodai Math. J. 4, 239–250 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  43. Omori, T.: On Eells-Sampson existence theorem for harmonic maps via exponentially harmonic maps. Nagoya Math. J. 201, 133–146 (2011)

    MATH  MathSciNet  Google Scholar 

  44. Perrone, D.: The rough Laplacian and harmonicity of Hopf vector fields. Ann. Glob. Anal. Geom. 28, 91–106 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Perrone, D.: Minimality, harmonicity and CR geometry for Reeb vector fields. Int. J. Math. 21(9), 1189–1218 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Perrone, D.: Classification of homogeneous almost cosymplectic three-manifolds. Differ. Geom. Appl. 30, 49–58 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  47. Petit, R.: Harmonic maps and strictly pseudoconvex CR manifolds. Commun. Anal. Geom. 41(2), 575–610 (2002)

    MathSciNet  Google Scholar 

  48. Sasaki, S., Hsu, C.-J.: On a property of Brieskorn manifolds. Tohoku Math. J. 28, 67–78 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  49. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24, 221–263 (1986)

    MATH  MathSciNet  Google Scholar 

  50. Tanaka, N.: A Differential Geometric Study on Strongly Pseudo-convex Manifolds. Kinokuniya Book Store, Tokyo (1975)

    MATH  Google Scholar 

  51. Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314, 349–379 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  52. Urakawa, H.: Variational problems over strongly pseudo-convex CR manifolds. In: Gu, C.H., Hu, H.S., Xin, Y.L. (eds.) Differential Geometry. Proc. Symp. in Honour of Prof. Su Buchin, pp. 233–242. World Scientific, Singapore-New Jersey-London-Hong Kong (1993)

    Google Scholar 

  53. Yano, K., Ishihara, S.: Invariant submanifolds of an almost contact manifold. Kodai Math. Semin. Rep. 21, 350–364 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  54. Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Mathematics, vol. 3. World Scientific, Singapore (1984)

    MATH  Google Scholar 

  55. Yang, Y.: The Existence of Harmonic Maps from Finsler Surfaces. Peking University, Beijing. Preprint

  56. Wei, Z.: Some results on p-harmonic maps and exponentially harmonic maps between Finsler manifolds. Appl. Math. J. Chin. Univ. 25(2), 236–242 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Dragomir.

Additional information

Communicated by Marco M. Peloso.

Supported by Università del Salento and M.I.U.R. (within P.R.I.N.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragomir, S., Perrone, D. Levi Harmonic Maps of Contact Riemannian Manifolds. J Geom Anal 24, 1233–1275 (2014). https://doi.org/10.1007/s12220-012-9371-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-012-9371-8

Keywords

Mathematics Subject Classification (2000)

Navigation