Skip to main content
Log in

The Stability Inequality for Ricci-Flat Cones

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article, we thoroughly investigate the stability inequality for Ricci-flat cones. Perhaps most importantly, we prove that the Ricci-flat cone over ℂP 2 is stable, showing that the first stable non-flat Ricci-flat cone occurs in the smallest possible dimension. On the other hand, we prove that many other examples of Ricci-flat cones over 4-manifolds are unstable, and that Ricci-flat cones over products of Einstein manifolds and over Kähler–Einstein manifolds with h 1,1>1 are unstable in dimension less than 10. As results of independent interest, our computations indicate that the Page metric and the Chen–LeBrun–Weber metric are unstable Ricci shrinkers. As a final bonus, we give plenty of motivations, and partly confirm a conjecture of Tom Ilmanen relating the λ-functional, the positive mass theorem, and the nonuniqueness of Ricci flow with conical initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The C++ files are available on http://www.buckingham.ac.uk/directory/dr-stuart-hall/.

References

  1. Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9(6), 641–651 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abreu, M.: Kähler geometry of toric manifolds in symplectic coordinates, symplectic and Contact Topology: Interactions and Perspectives. Fields Inst. Commun. 35, 1–24 (2003) Toronto, ON/Montreal, QC, 2001

    MathSciNet  Google Scholar 

  3. Almgren, F.: Q-valued Functions Minimizing Dirichlet’s Integral and the Regularity of Area-minimizing Rectifiable Currents up to Codimension 2 Monograph Series in Mathematics. World Scientific, NJ (2000) Preface by J. Taylor and V. Scheffer

    MATH  Google Scholar 

  4. Besse, A.: Einstein Manifolds. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  5. Bunch, R.S., Donaldson, S.K.: Numerical approximations to extremal metrics on toric surfaces. In: Handbook of Geometric Analysis. Adv. Lect. Math., vol. 7(1), pp. 1–28 (2008)

    Google Scholar 

  6. Calabi, E.: Extremal Kähler metrics II. In: Differential Geometry and Complex Analysis, pp. 95–114. Springer, Berlin (1985)

    Chapter  Google Scholar 

  7. Cao, H.-D.: Recent progress on Ricci solitons. In: Recent Advances in Geometric analysis. Adv. Lect. Math., vol. 11, pp. 1–38. Int. Press, Somerville (2010)

    Google Scholar 

  8. Cao, H.-D., Hamilton, R., Ilmanen, T.: Gaussian densities and stability for some Ricci solitons (2004). arXiv:math/0404165v1

  9. Cao, H.-D., Zhu, M.: On second variation of perelman’s ricci shrinker entropy. Math. Ann. 353(3), 747–763 (2012). doi:10.1007/s00208-011-0701-0

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheeger, J.: Degeneration of Einstein Metrics and Metrics with Special Holonomy. Surv. Differ. Geom., vol. VIII. Int. Press, Somerville (2003)

    Google Scholar 

  11. Cheeger, J., Naber, A.: Lower bounds on ricci curvature and quantitative behavior of singular sets. Invent. Math. (2012). doi:10.1007/s00222-012-0394-3. arXiv:1103.1819v2

    MATH  Google Scholar 

  12. Chen, X., LeBrun, C., Weber, B.: On conformally Kähler, Einstein manifolds. J. Am. Math. Soc. 21(4), 1137–1168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Colding, T., Minicozzi, W.: Generic mean curvature flow I; generic singularities. Ann. of Math. (2) 175(2), 755–833 (2012). arXiv:0908.3788v1

    Article  MATH  MathSciNet  Google Scholar 

  14. Colding, T., Minicozzi, W.: Smooth compactness of self-shrinkers. Commun. Math. Helv. 87(2), 463–475 (2012). arXiv:0907.2594v1

    Article  MATH  MathSciNet  Google Scholar 

  15. Delzant, T.: Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. Fr. 116(3), 315–339 (1988)

    MATH  MathSciNet  Google Scholar 

  16. Donaldson, S.K.: Interior estimates for solutions to Abreu’s equation. Collect. Math. 56(2), 103–142 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Donaldson, S.K.: Kähler geometry on toric manifolds and some other manifolds with large symmetry. In: Handbook of Geometric Analysis. Adv. Lect. Math., vol. 7, pp. 29–75 (2008)

    Google Scholar 

  18. Donaldson, S.K.: Some numerical results in complex differential geometry. Pure Appl. Math. Q. 5(2), 571–618 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Feldman, M., Ilmanen, T., Knopf, D.: Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons. J. Differ. Geom. 65(2), 169–209 (2003)

    MATH  MathSciNet  Google Scholar 

  20. Gastel, A., Kronz, M.: A family of expanding Ricci solitons. In: Variational Problems in Riemannian Geometry. Progr. Nonlinear Differential Equations Appl., vol. 59, pp. 81–93. Birkhäuser, Basel (2004)

    Chapter  Google Scholar 

  21. Germain, P., Rupflin, M.: Selfsimilar expanders of the harmonic map flow. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28, 743–773 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gibbons, G., Hartnoll, S., Pope, C.: Bohm and Einstein-Sasaki metrics, black holes, and cosmological event horizons. Phys. Rev. D 3, 67, no. 8 (2003)

    MathSciNet  Google Scholar 

  23. Gross, D., Perry, M., Yaffe, L.: Instability of flat space at finite temperature. Phys. Rev. D 3(25), 330–355 (1982)

    Article  MathSciNet  Google Scholar 

  24. Guenther, C., Isenberg, J., Knopf, D.: Stability of the Ricci flow at Ricci-flat metrics. Commun. Anal. Geom. 10(4), 741–777 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Hall, S.: Numerical methods and Riemannian geometry. Ph.D. thesis, Imperial College, London (2011)

  26. Hall, S., Murphy, T.: On the linear stability of Kähler-Ricci solitons. Proc. Am. Math. Soc. 139(9), 3327–3337 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MATH  Google Scholar 

  28. Haslhofer, R.: Perelman’s lambda-functional and the stability of Ricci-flat metrics. Calc. Var. Partial Differ. Equ. (2012). doi:10.1007/s00526-011-0468-x. arXiv:1003.4633v2

    MathSciNet  Google Scholar 

  29. Haslhofer, R.: A renormalized Perelman-functional and a lower bound for the ADM-mass. J. Geom. Phys. 61, 2162–2167 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Haslhofer, R.: A mass-decreasing flow in dimension three. Math. Res. Lett. (to appear). Available at arXiv:1107.3220v2

  31. Haslhofer, R., Müller, R.: A compactness theorem for complete Ricci shrinkers. Geom. Funct. Anal. 21, 1091–1116 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ilmanen, T.: Lectures on mean curvature flow and related equations. Lecture notes ICTP, Trieste (1995)

  33. Ilmanen, T.: Private communication

  34. Kapouleas, N., Kleene, S., Møller, N.: Mean curvature self-shrinkers of high genus: non-compact examples (2011). arXiv:1106.5454v1

  35. Knopf, D.: Convergence and stability of locally ℝN-invariant solutions of Ricci flow. J. Geom. Anal. 19(4), 817–846 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. LeBrun, C.: Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118(4), 591–596 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  37. LeBrun, C.: Einstein metrics on complex surfaces. In: Geometry and Physics. Lecture Notes in Pure and Appl. Math., vol. 184, pp. 167–176 (1997)

    Google Scholar 

  38. Lohkamp, J.: Scalar curvature and hammocks. Math. Ann. 313(3), 385–407 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Page, D.: A compact rotating gravitational instanton. Phys. Lett. 79B, 235–238 (1979)

    MathSciNet  Google Scholar 

  41. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). arXiv:math/0211159v1

  42. Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscr. Math. 28(1–3), 159–183 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  44. Schulze, F., Simon, M.: Expanding solitons with non-negative curvature operator coming out of cones (2010). arXiv:1008.1408v1

  45. Sesum, N.: Linear and dynamical stability of Ricci-flat metrics. Duke Math. J. 133(1), 1–26 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Siepmann, M.: Ph.D. thesis, in preparation

  47. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis. ANU, Canberra (1983)

    Google Scholar 

  48. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. (2) 88, 62–105 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  49. Sturm, K.-T.: On the geometry of metric measure spaces I. Acta Math. 196(1), 65–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. Sturm, K.-T.: On the geometry of metric measure spaces II. Acta Math. 196(1), 133–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  51. Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  52. Warner, N.P.: The spectra of operators on ℂP n. Proc. R. Soc. Lond. Ser. A 383(1784), 217–230 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  53. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80(3), 381–402 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  54. Young, R.E.: Semiclassical instability of gravity with positive cosmological constant. Phys. Rev. D 28(10), 2436–2438 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Richard Bamler, Pierre Germain, Nadine Große, Martin Li, Rafe Mazzeo, Thomas Murphy, Melanie Rupflin, Richard Schoen, Miles Simon, Michael Struwe, and especially Tom Ilmanen and Simon Donaldson for useful discussions and interesting comments. The research of RH and MS has been partly supported by the Swiss National Science Foundation; SH was supported by the EPSRC. RH also thanks the HIM Bonn for hospitality and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Haslhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, S., Haslhofer, R. & Siepmann, M. The Stability Inequality for Ricci-Flat Cones. J Geom Anal 24, 472–494 (2014). https://doi.org/10.1007/s12220-012-9343-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-012-9343-z

Keywords

Mathematics Subject Classification

Navigation