Skip to main content
Log in

Magnetic Gravity Compensation

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Magnetic gravity compensation in fluids is increasingly popular as a means to achieve low-gravity for physical and life sciences studies. We explain the basics of the magnetic gravity compensation and analyze its advantages and drawbacks. The main drawback is the spatial heterogeneity of the residual gravity field. We discuss its causes. Some new results concerning the heterogeneity estimation and measurement are presented. A review of the existing experimental installations and works involving the magnetic gravity compensation is given for both physical and life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babbick, M., Dijkstra, C., Larkin, O., Anthony, P., Davey, M., Power, J., Lowe, K., Cogoli-Greuter, M., Hampp, R.: Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation). Adv. Space Res. 39(7), 1182–1189 (2007)

    Article  Google Scholar 

  • Ball, P.: Superconducting boost for goldfish. Nature 123, 347 (1990)

    Google Scholar 

  • Beaugnon, E., Tournier, R.: Levitation of water and organic substances in high static magnetic fields. J. Phys., III (France) 1(8), 1423–1428 (1991)

    Article  Google Scholar 

  • Beysens, D., Chatain, D., Evesque, P., Garrabos, Y.: Dynamics of phase transition in H2 under high frequency vibrations. Microgravity Sci. Technol. 16(1), 274–279 (2005a)

    Article  Google Scholar 

  • Beysens, D., Chatain, D., Evesque, P., Garrabos, Y.: High-frequency driven capillary flows speed up the gas-liquid phase transition in zero-gravity conditions. Phys. Rev. Lett. 95(3), 034502 (2005b)

    Article  Google Scholar 

  • Beysens, D., Chatain, D., Garrabos, Y., Lecoutre, C., Palencia, F., Evesque, P., Nikolayev, V.: The effect of vibrations on heterogeneous fluids: some studies in weightlessness. Acta Astronaut. 61(11–12), 1002–1009 (2007)

    Article  Google Scholar 

  • Beysens, D., Chatain, D., Evesque, P., Garrabos, Y.: Nucleation and growth of a bubble pattern under vibrations in weightlessness. Europhys. Lett. 82(3), 36003 (2008)

    Article  Google Scholar 

  • Beysens, D., Pichavant, G., Chatain, D., Nikolayev, V.: Phase change—induced motion of H2 vapour bubbles under a temperature gradient. In: ELGRA Symposium. Bonn, 1–4/09/2009 (2009)

  • Braunbek, W.: Freies schweben diamagnetischer körper im magnetfeld. Z. Phys. 112(11), 764–769 (1939)

    Article  Google Scholar 

  • Brooks, J.S., Cothern, J.A.: Diamagnetism and magnetic force: a new laboratory for granular materials and chaotic/ deterministic dynamics. Physica, B 294–295, 721–728 (2001)

    Article  Google Scholar 

  • Catherall, A.T., Benedict, K.A., King, P.J., Eaves, L.: Surface instabilities on liquid oxygen in an inhomogeneous magnetic field. Phys. Rev., E 68(3), 037302 (2003)

    Article  Google Scholar 

  • Chatain, D., Nikolayev, V.S.: Using magnetic levitation to produce cryogenic targets for inertial fusion energy: experiment and theory. Cryogenics 42, 253–261 (2002)

    Article  Google Scholar 

  • Chubar, O., Elleaume, P., Chavanne, J.: A three-dimensional magnetostatics computer code for insertion devices. J. Synchrotron Radiat. 5(3), 481–484 (1998)

    Article  Google Scholar 

  • Coleman, C.B., Gonzalez-Villalobos, R.A., Allen, P.L., Johanson, K., Guevorkian, K., Valles, J.M., Hammond, T.G.: Diamagnetic levitation changes growth, cell cycle, and gene expression of Saccharomyces cerevisiae. Biotechnol. Bioeng. 98(4), 854–863 (2007)

    Article  Google Scholar 

  • Cowley, M.D., Rosensweig, R.E.: The interfacial stability of a ferromagnetic fluid. J. Fluid Mech. 30(4), 671–688 (1967)

    Article  MATH  Google Scholar 

  • Guevorkian, K., Valles, J.M. Jr: Varying the effective buoyancy of cells using magnetic force. Appl. Phys. Lett. 84(24), 4863–4865 (2004)

    Article  Google Scholar 

  • Hammer, B., Kidder, L., Williams, P., Xu, W.: Magnetic levitation of MC3T3 Osteoblast cells as a ground-based simulation of microgravity. Microgravity Sci. Technol. 21(4), 311–318 (2009).

    Article  Google Scholar 

  • Hill, R.J.A., Eaves, L.: Nonaxisymmetric shapes of a magnetically levitated and spinning water droplet. Phys. Rev. Lett. 101(23), 234501 (2008)

    Article  Google Scholar 

  • Khaldi, F., Messadek, K., Benselama, A.: Isolation of gravity effects on diffusion flames by magnetic field. Microgravity Sci. Technol. 22(1), 1–5 (2010).

    Article  Google Scholar 

  • Kirichenko, Y.A., Verkin, B.I.: Simulation of zero and reduced gravity fields for heat transfer investigations under boiling. Dopovidi AN UkSSR Ser. A(7), 637–640 (1968). In Ukrainian

    Google Scholar 

  • Kiyoshi, T., Wada, H.: Development of advanced high-field magnets at the Tsukuba magnet laboratory. J. Low Temp. Phys. 133(1), 31–40 (2003)

    Article  Google Scholar 

  • Liu, Y., Zhu, D.M., Strayer, D.M., Israelsson, U.E.: Magnetic levitation of large water droplets and mice. Adv. Space Res. 45(1), 208–213 (2010).

    Article  Google Scholar 

  • Lorin, C., Mailfert, A., Chatain, D., Félice, H., Beysens, D.: Magnetogravitational potential revealed near a liquid-vapor critical point. J. Appl. Phys. 106(3), 033905 (2009)

    Article  Google Scholar 

  • Lu, H.M., Yin, D.C., Li, H.S., Geng, L.Q., Zhang, C.Y., Lu, Q.Q., Guo, Y.Z., Guo, W.H., Shang, P., Wakayama, N.I.: A containerless levitation setup for liquid processing in a superconducting magnet. Rev. Sci. Instrum. 79(9), 093903 (2008)

    Article  Google Scholar 

  • Lyon, D.N., Jones, M.C., Ritter, G.L., Chiladakis, C.I., Kosky, P.G.: Peak nucleate boiling fluxes for liquid oxygen on a flat horizontal platinum surface at buoyancies corresponding to accelerations between −0.03 and 1g E . AIChE J. 11(5), 773–780 (1965)

    Article  Google Scholar 

  • Lyuksyutov, I.F., Naugle, D.G., Rathnayaka, K.D.D.: On-chip manipulation of levitated femtodroplets. Appl. Phys. Lett. 85(10), 1817–1819 (2004)

    Article  Google Scholar 

  • Manzano, A., Matía, I., González-Camacho, F., Carnero-Díaz, E., van Loon, J., Dijkstra, C., Larkin, O., Anthony, P., Davey, M., Marco, R., Medina, F.: Germination of arabidopsis seed in space and in simulated microgravity: alterations in root cell growth and proliferation. Microgravity Sci. Technol. 21(4), 293–297 (2009a).

    Article  Google Scholar 

  • Manzano, A.I., Dijkstra, C., Larkin, O., Anthony, P., Davey, M.R., Hill, R.J., Eaves, L., Carnero-Díaz, E., Medina, F.J.: Expression of cyclin B1 gene, a cell cycle regulator, is enhanced in young Arabidopsis seedlings grown in altered gravity, under magnetic levitation. In: ELGRA Symposium. Bonn, 1–4/09/2009 (2009b)

  • Manzano, A.I., Dijkstra, C., Larkin, O., Anthony, P., Davey, M.R., Hill, R.J., Eaves, L., Carnero-Díaz, E., Medina, F.J.: A sequential study on early plant development under magnetic levitation shows effects of altered gravity on cell proliferation and growth. In: ELGRA Symposium. Bonn, 1–4/09/2009 (2009c)

  • Matsumoto, S., Kiyoshi, T., Asano, T., Sato, A., Wada, H.: Comprehensive applications of high magnetic fields at TML. Physica, B 346–347, 633–637 (2004). Proceedings of the 7th International Symposium on Research in High Magnetic Fields

  • Moes, M., Gielen, J., Bleichrodt, R., van Loon, J., Christianen, P., Boonstra, J.: Magnetic levitation of human A431 cells. In: ELGRA Symposium. Bonn, 1–4/09/2009 (2009)

  • Nikolayev, V.S., Chatain, D., Garrabos, Y., Beysens, D.: Experimental evidence of the vapor recoil mechanism in the boiling crisis. Phys. Rev. Lett. 97, 184503 (2006)

    Article  Google Scholar 

  • Pichavant, G., Beysens, D., Chatain, D., Communal, D., Lorin, C., Mailfert, A.: Using superconducting magnet to reproduce quick variations of gravity in liquid oxygen. In: ELGRA Symposium. Bonn, 1–4/09/2009 (2009a)

  • Pichavant, G., Cariteau, B., Chatain, D., Nikolayev, V., Beysens, D.: Magnetic compensation of gravity: Experiments with oxygen. Microgravity Sci. Technol. 21(1), 129–133 (2009b)

    Article  Google Scholar 

  • Pichavant, G., Cariteau, B., Chatain, D., Beysens, D., Nikolayev, V.S., Communal, D., Bonnay, P.: Magnetic gravity compensation setup to create variable gravity levels and fast transients in O2. Rev. Sci. Instrum. (2010, submitted)

  • Quettier, L., Félice, H., Mailfert, A., Chatain, D., Beysens, D.: Magnetic compensation of gravity forces in liquid/gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts. Eur. Phys. J., Appl. Phys. 32(3), 167–175 (2005)

    Article  Google Scholar 

  • Simon, M.D., Geim, A.K.: Diamagnetic levitation: flying frogs and floating magnets. J. Appl. Phys. 87(9), 6200–6204 (2000)

    Article  Google Scholar 

  • Stone, H.A., Lister, J.R., Brenner, M.P.: Drops with conical ends in electric and magnetic fields. Proc. R. Soc. Lond., A 455, 329–347 (1999)

    Article  MATH  Google Scholar 

  • Sueda, M., Katsuki, A., Nonomura, M., Kobayashi, R., Tanimoto, Y.: Effects of high magnetic field on water surface phenomena. J. Phys. Chem., C 111(39), 14389–14393 (2007)

    Article  Google Scholar 

  • Tagami, M., Hamai, M., Mogi, I., Watanabe, K., Motokawa, M.: Solidification of levitating water in a gradient strong magnetic field. J. Cryst. Growth 203(4), 594–598 (1999)

    Article  Google Scholar 

  • Takeda, M., Nishigaki, K.: Deformation of the liquid oxygen meniscus induced by magnetic field. J. Phys. Soc. Jpn. 63(4), 1345–1350 (1994)

    Article  Google Scholar 

  • Valles, J.M. Jr, Lin, K., Denegre, J.M., Mowry, K.L.: Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation. Biophys. J. 73(2), 1130–1133 (1997)

    Article  Google Scholar 

  • Watanabe, K., Takahashi, K., Mogi, I., Nishijima, G., Awaji, S., Motokawa, M.: Cryogen-free hybrid magnet for magnetic levitation. Physica, C 386, 485–489 (2003)

    Article  Google Scholar 

  • Weilert, M.A., Whitaker, D.L., Maris, H.J., Seidel, G.M.: Magnetic levitation and noncoalescence of liquid helium. Phys. Rev. Lett. 77(23), 4840–4843 (1996)

    Article  Google Scholar 

  • Whitaker, D.L., Kim, C., Vicente, C.L., Weilert, M.A., Maris, H.J., Seidel, G.M.: Shape oscillations in levitated He II drops. J. Low Temp. Phys. 113(3), 491–499 (1998)

    Article  Google Scholar 

  • Wunenburger, R., Chatain, D., Garrabos, Y., Beysens, D.: Magnetic compensation of gravity forces in (p-) hydrogen near its critical point: application to weightless conditions. Phys. Rev., E 62(1), 469–476 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Nikolayev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolayev, V.S., Chatain, D., Beysens, D. et al. Magnetic Gravity Compensation. Microgravity Sci. Technol. 23, 113–122 (2011). https://doi.org/10.1007/s12217-010-9217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-010-9217-6

Keywords

Navigation