Skip to main content
Log in

Influence of geometry on swimming performance of helical swimmers using DoE

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

Helical microswimmers capable of propulsion at low Reynolds numbers have been proposed for numerous applications, ranging from in vitro tasks on lab-on-a-chip to in vivo applications for minimally invasive medicine. Several magnetically actuated helical swimmers with different geometry parameters have been proposed in prior works. However, the influence of the geometrical parameters on their swimming performance has not been clearly studied. In this paper, we propose a dimensionless study on the geometrical parameters using Design of Experiments (DoE), in order to find the influential geometrical parameters on the swimming performance. We found that the most influential geometrical parameter on the swimming performance is the pitch of the helix. A helical swimmer with longer pitch shows better swimming performance in our testing range. The effects of the factors obtained by the experiments are also compared to the effects estimated by the theoretical sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbott J, Nagy Z, Beyeler F, Nelson B (2007) IEEE Robot Autom Mag 14(2):92. doi:10.1109/MRA.2007.380641

    Article  Google Scholar 

  2. Abbott J, Cosentino Lagomarsino M, Zhang L, Dong L, Nelson B (2009). Int J Robot Res 28(11-12):1434

    Article  Google Scholar 

  3. Gauthier M, Régnier S (2010) Robotic micro-assembly. IEEE press

  4. Chaillet N, Régnier S (2013) Microrobotics for micromanipulation. ISTE. Wiley

  5. Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E (2015). Proc IEEE 103 (2):205

    Article  Google Scholar 

  6. Nelson B, Kaliakatsos I, Abbott J (2010). Annu Rev Biomed Eng 12(1):55

    Article  Google Scholar 

  7. Bolopion A, Xie H, Haliyo S, Régnier S (2012). IEEE/ASME Trans Mechatron 17(1):116

    Article  Google Scholar 

  8. Hagiwara M, Kawahara T, Iijima T, Arai F (2013). IEEE Trans Robot 29 (2):363. doi:10.1109/TRO.2012.2228310

    Article  Google Scholar 

  9. Gauthier M, Andreff N, Dombre E (2014) Intracoporeal robotics: from milliscale towards nanoscale. Wiley. ISBN:978-1-84821-371-5

  10. Purcell E (1977). Am J Phys 45(1):3

    Article  MathSciNet  Google Scholar 

  11. Purcell E (1997). Proc Natl Acad Sci USA 94(21):11307

    Article  Google Scholar 

  12. Berg H, Anderson R (1973). Nature 245(5425):380

    Article  Google Scholar 

  13. Honda T, Arai K, Ishiyama K (1996). IEEE Trans Magn 32(5):5085

    Article  Google Scholar 

  14. Ishiyama K, Arai K, Sendoh M, Yamazaki A (2000). In: Proceedings of 2000 International Symposium on Micromechatronics and Human Science, pp 65 –69

  15. Bell D, Leutenegger S, Hammar K, Dong L, Nelson B (2007). In: Robotics and Automation, 2007 IEEE International Conference on, pp 1128–1133

  16. Zhang L, Abbott J, Dong L, Peyer K, Kratochvil B, Zhang H, Bergeles C, Nelson BJ (2009). Nano Letters 9:3663. doi:10.1021/nl901869j

    Article  Google Scholar 

  17. Zhang L, Peyer K, Nelson B (2010). Lab Chip 10:2203

    Article  Google Scholar 

  18. Ghosh A, Fischer P (2009). Nano Letters 9(6):2243

    Article  Google Scholar 

  19. Hwang G, Haliyo S, Régnier S (2010)

  20. Hwang G, Braive R, Couraud L, Cavanna A, Abdelkarim O, Robert-Philip I, Beveratos A, Sagnes I, Haliyo S, Régnier S (2011). Int J Robot Res 30(7):806

    Article  Google Scholar 

  21. Acosta J, Hwang G, Polesel-Maris J, Régnier S (2011). Rev Sci Instrum 82(3):035116

    Article  Google Scholar 

  22. Mahoney A, Sarrazin J, Bamberg E, Abbott J (2011). Adv Robot 25(8):1007

    Article  Google Scholar 

  23. Tottori S, Zhang L, Qiu F, Krawczyk K, Franco-Obregn A, Nelson B (2012). Adv Mater 24 (6):811. Highlighted as the front cover

    Article  Google Scholar 

  24. Xu T, Hwang G, Andreff N, Régnier S (2013). In: Advanced Intelligent Mechatronics (AIM), 2013 IEEE/ASME International Conference on. IEEE, pp 1114–1120

  25. Xu T, Hwang G, Andreff N, Régnier S (2014). IEEE/ASME Trans Mechatron 19(3):1069

    Article  Google Scholar 

  26. Gray J, Hancock GJ (1955). J Exp Biol 32(4):802

    Google Scholar 

  27. Lighthill J (1976). SIAM Rev 18(2):161

    Article  MathSciNet  Google Scholar 

  28. Rodenborn B, Chen CH, Swinney HL, Liu B, Zhang H (2013). Proc Natl Acad Sci 110(5):E338

    Article  Google Scholar 

  29. Yesin KB, Vollmers K, Nelson BJ (2006). Int J Robot Res 25(5-6):527

    Article  Google Scholar 

  30. Fisher R.A (1935) The design of experiments. Olyver and Boyd Edinburgh

  31. Goupy J, Creighton L (2006) Introduction aux plans d’expériences - 3ème édition. Technique et ingénierie: Série conception. Dunod

  32. Mason RL, Gunst RF, Hess JL (2003) Statistical design and analysis of experiments, 2nd edn. Wiley Series in Probability and Statistics. Wiley

  33. Box GEP, Hunter JS, Hunter WG (1976) Statistics for experimenters an introduction to design

  34. Lauga E, Powers T (2009). Rep Prog Phys 72(9):096601

    Article  MathSciNet  Google Scholar 

  35. Moran U, Phillips R, Milo R (2010). Cell 141(7):1262

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from Émergence-UPMC-2012 research program, the Franche-Comté region, and ACTION, the French ANR Labex no. ANR-11-LABX-01-01. The authors are also grateful to Sinan Haliyo, Sylvain Pledel, Christophe Grand, Jean-ochin Abrahamians, Ali Oulmas, Antoine Weill-Duflos, and Tianyi Li for providing technical supports on the expermental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiantian Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 1.57 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Hwang, G., Andreff, N. et al. Influence of geometry on swimming performance of helical swimmers using DoE. J Micro-Bio Robot 11, 57–66 (2016). https://doi.org/10.1007/s12213-015-0084-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-015-0084-5

Keywords

Navigation