Skip to main content
Log in

Experimental and theoretical analyses of a double-cylindrical trough solar concentrator

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Parabolic trough, Fresnel, heliostat mirror, or dish-type collectors are used to obtain high temperature in solar thermal applications. The operation of this system is similar to that of a Fresnel collector, except for its reflective mirror, which is cylindrical and not flat. The experiments were carried out in the solar energy system manufactured for producing hot water, superheated water, and steam in the cylindrical trough solar concentrator. According to the test results, the thermal power of the system and the average thermal efficiency of the collector were a maximum of 15 kW and approximately 35 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aa:

Absorber surface area (m2)

Ac:

Total aperture area (m2)

Cp:

Specific heat of fluid (kJ/kg K)

Ia :

Radiation coming to the absorbent surface (W/m2)

Id :

Direct radiation (W/m2)

:

Flow rate of the fluid (kg/s)

R:

Thermal resistance

Tin :

Water inlet temperature °C

Tout :

Water outlet temperature °C

Tp :

Absorber surface temperature °C

Tamb :

Ambient temperature °C

UT :

Total heat transfer coefficient (W/m2K)

Qu :

Thermal power (kW)

FR :

Heat gain factor

Y :

Intercept factor (0.99)

η:

Collector thermal efficiency

T:

Radiation transmission coefficient (0.88)

α:

The ratio of absorbing radiation (0.91)

ρ:

The ratio of reflection (0.83)

References

  1. M. Chekerovska and R. V. Filkoski, Efficiency of liquid flat-plate solar energy collector with solar tracking system, Thermal Science, 19(5) (2015) 1673–1684.

    Article  Google Scholar 

  2. Y. W. Koholé and G. Tchuen, Experimental validation of exergy optimization of a flat-plate solar collector in a thermosyphon solar water heater, Arabian Journal for Science and Engineering, 44 (2019) 2535–2549.

    Article  Google Scholar 

  3. B. Evangelos and T. Christos, Alternative designs of parabolic trough solar collectors, Progress in Energy and Combustion Science, 71 (2019) 81–117.

    Article  Google Scholar 

  4. I. H. Yilmaz and A. Mwesigye, Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review, Applied Energy, 225 (2018) 135–174.

    Article  Google Scholar 

  5. K. D. Ramesh and K. Suresh, Thermal performance of parabolic trough collector with absorber tube misalignment and slope error, Solar Energy, 184 (2019) 249–259.

    Article  Google Scholar 

  6. G. K. Manikandan et al., Enhancing the optical and thermal efficiency of a parabolic trough collector-a review, Applied Energy, 235 (2019) 1524–1540.

    Article  Google Scholar 

  7. K. M. Shirvan et al., Numerical study of surface radiation and combined natural convection heat transfer in a solar cavity receiver, International Journal of Numerical Methods for Heat and Fluid Flow, 27(10) (2017) 2385–2399.

    Article  Google Scholar 

  8. D. Mills, Advanced in solar thermal electricity technology, Solar Energy, 76 (2004) 19–31.

    Article  Google Scholar 

  9. M. A. Moghimi, K. J. Craig and J. P. Meyer, Optimization of a trapezoidal cavity absorber for the linear Fresnel reflector, Solar Energy, 119 (2015) 343–361.

    Article  Google Scholar 

  10. G. Zhu, T. Wendelin, M. J. Wagner and C. Kutscher, History, current state, and future of linear Fresnel concentrating solar collectors, Solar Energy 103 (2014) 639–652.

    Article  Google Scholar 

  11. M. Montes et al., Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver, Applied Thermal Engineering, 104 (2016) 162–175.

    Article  Google Scholar 

  12. E. Bellos et al., Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver, Energy Conversion and Management, 130 (2016) 44–59.

    Article  Google Scholar 

  13. G. Morin et al., Comparison of linear Fresnel and parabolic trough collector power plants, Solar Energy, 86 (2012) 1–12.

    Article  Google Scholar 

  14. P. L. Singh, R. M. Sarviya and J. L. Bhagoria, Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers, Applied Energy, 87 (2010) 541–550.

    Article  Google Scholar 

  15. Z. Yanqing et al., Design and experimental investigation of a stretched parabolic linear Fresnel reflector collecting system, Energy Conversion and Management, 126 (2016) 89–98.

    Article  Google Scholar 

  16. E. Bellos et al., Experimental investigation of the daily performance of an integrated linear Fresnel reflector system, Solar Energy, 167 (2018) 220–230.

    Article  Google Scholar 

  17. Z. Hongfei et al., Design and experimental analysis of a cylindrical compound Fresnel solar concentrator, Solar Energy, 107 (2014) 26–37.

    Article  Google Scholar 

  18. A. Rawani, S. P. Sharma, K. D. P. Singh and K. Namarata, Analytical modeling of parabolic linear collectors for solar power plant, Journal of Mechanical Science and Technology, 32(10) (2018) 4993–5004.

    Article  Google Scholar 

  19. W. T. Xie, Y. J. Dai and R. Z. Wang, Thermal performance analysis of a line-focus Fresnel lens solar collector using different cavity receivers, Solar Energy, 91 (2013) 242–255.

    Article  Google Scholar 

  20. J. C. Duran and R. O. Nicolas, Development and applications of a two-dimensional optical analysis of non-perfect cylindrical concentrators, Solar Energy, 34 (1985) 257–269.

    Article  Google Scholar 

  21. H. B. Kulkarni, Design and development of prototype cylindrical parabolic solar collector for water heating application, Internaional Journal of Renewable Energy Development, 5(1) (2016) 49–55.

    MathSciNet  Google Scholar 

  22. B. Sadhana, L. S. V. Prasad and G. Satyanand, Design aspects of cylindrical parabolic concentrator for sterilization, International Journal of Emerging Technology and Advanced Engineering, 4(8) (2014) 203–209.

    Google Scholar 

  23. P. Math, N. Rao and R. Parasat, Experimental analysis of cylindrical parabolic collector with and without tracking system, International Journal of Ignited Minds, 11 (2014) 1–6.

    Google Scholar 

  24. F. Ullah and K. Min, Performance evaluation of dual-axis tracking system of parabolic trough solar collector, Materials Science and Engineering (2018) 301–310.

  25. J. A. Duffie and W. A. Beckman, Solar Energy Thermal Processes, John Wiley and Sons, New York (1991).

    Google Scholar 

  26. A. Kılıç, Solar Energy, Kipaş Distributorship (1984).

  27. C. Çetiner, F. Halıcı and H. Çaçur, The experimental and theoretical investigation on of superheated water in twin-cylindrical solar parabolic collectors, Isı Bilimi ve Teknigi Dergisi/Journal of Thermal Science and Technology, 31 (2011) 87–94.

    Google Scholar 

  28. F. P. Incropera and D. P. DeWitt, Heat and Mass Transfer, Literatür Publishing (Translation), Istanbul (2001).

    Google Scholar 

  29. S. Conrado, A. Rodriguez and G. Calderon, Thermal performance of parabolic trough solar collectors, Renewable and Sustainable Energy Reviews, 67 (2017) 1345–1359.

    Article  Google Scholar 

  30. J. S. Hesieh, Solar Energy Engineering, Prentice-Hall (1986).

  31. W. Chamsa et al., Thermal performance testing of heat pipe evacuated tube with compound parabolic concentrating, Solar Collector by ISO 9806 -1, Energy Procedia, 56 (2014) 237–246.

    Article  Google Scholar 

  32. H. Beltagy, D. Semmar, C. Lehaut and N. Said, Theoretical and experimental performance analysis of a Fresnel type solar concentrator, Renewable Energy, 101 (2017) 782–793.

    Article  Google Scholar 

  33. J. K. Nayak, E. Y. Amer and S. M. Deshpande, Comparison of three transient methods for testing solar flat-plate collector, Energy Conversions & Management, 4 (2000) 677–700.

    Article  Google Scholar 

  34. S. M. Jeter, Analytical determination of the optical performance of practical parabolic trough collectors from design data, Solar Energy, 39 (1987) 11–21.

    Article  Google Scholar 

  35. E. H. Amer, J. K Nayak and G. K. Sarma, Transient test method for plat-plate collector: review and experimental evaluation, Solar Energy, 60(5) (1997) 229–243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuma Çetiner.

Additional information

Cuma Çetiner finished his Ph.D. degree in Sakarya University in Turkey. He has works as an Assistant Professor at Harran University. His research interest includes solar and renewable energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetiner, C. Experimental and theoretical analyses of a double-cylindrical trough solar concentrator. J Mech Sci Technol 34, 4857–4863 (2020). https://doi.org/10.1007/s12206-020-1041-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-020-1041-3

Keywords

Navigation