Skip to main content
Log in

An enhanced mean field material model incorporating dislocation strengthening for particle reinforced metal matrix composites

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

An analytic model of predicting the elastoplastic stress-strain curve of particle reinforced metal matrix composites is proposed. This model is enhanced so that Mori-Tanaka method can be applied to bimodal or particulate metal matrix composites that exhibit size effects due to the dislocation strengthening mechanisms. The thermal misfit and mechanical misfit strains between the inclusion and the matrix are accounted for by this model. Several aluminum-based metal matrix composite as well as a bimodal copper system are examined and their yield strengths and stress-strain curves are compared with published experimental data. The proposed model is simple, yet quite effective and reasonably accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ashby, The deformation of plastically non-homogeneous materials, Philosophical Magazine, 21 (170) (1970) 399–424.

    Article  Google Scholar 

  2. R. J. Arsenault and N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion, Materials Science and Engineering, 81 (1986) 175–187.

    Article  Google Scholar 

  3. Y. S. Suh, S. P. Joshi and K. T. Ramesh, An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites, Acta Materialia, 57 (19) (2009) 5848–5861.

    Article  Google Scholar 

  4. D. C. Dunand and A. Mortensen, On plastic relaxation of thermal stresses in reinforced metals, Acta Metallurgica Et Materialia, 39 (2) (1991) 127–139.

    Article  Google Scholar 

  5. M. Taya, K. E. Lulay and D. J. Lloyd, Strengthening of a particulate metal matrix composite by quenching, Acta Metallurgica Et Materialia, 39 (1) (1991) 73–87.

    Article  Google Scholar 

  6. S. M. Shibata, M. Taya, T. Mori and T. Mura, Dislocation punching from spherical inclusions in a metal matrix composite, Acta Metallurgica Et Materialia, 40 (11) (1992) 3141–3148.

    Article  Google Scholar 

  7. C. W. Nan and D. R. Clarke, The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites, Acta Materialia, 44 (9) (1996) 3801–3811.

    Article  Google Scholar 

  8. L. H. Dai, Z. Ling and Y. L. Bai, Size-dependent inelastic behavior of particle-reinforced metal-matrix composites, Composites Science and Technology, 61 (8) (2001) 1057–1063.

    Article  Google Scholar 

  9. V. Taupin, S. Berbenni, C. Fressengeas and O. Bouaziz, On particle size effects: An internal length mean field approach using field dislocation mechanics, Acta Materialia, 58 (16) (2010) 5532–5544.

    Article  Google Scholar 

  10. N. A. Fleck, G. M. Muller, M. F. Ashby and J. W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia, 42 (1994) 475–487.

    Article  Google Scholar 

  11. N. A. Fleck and J. W. Hutchinson, Strain gradient plasticity, Advances in Applied Mechanics, 33 (1997) 295–361.

    Article  Google Scholar 

  12. W. D. Nix and H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 46 (3) (1998) 411–425.

    Article  MATH  Google Scholar 

  13. H. Gao, Y. Huang, W. D. Nix and J. W. Hutchinson, Mechanism-based strain gradient plasticity-I. Theory, Journal of the Mechanics and Physics of Solids, 47 (1999) 1239–1263.

    Article  MATH  MathSciNet  Google Scholar 

  14. N. A. Fleck and J. W. Hutchinson, A reformulation of strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 49 (2001) 2245–2271.

    Article  MATH  Google Scholar 

  15. J. W. Kysar, Y. Saito, M. S. Oztop, D. Lee and W. T. Huh, Experimental lower bounds on geometrically necessary dislocation density, International Journal of Plasticity, 26 (8) (2010) 1097–1123.

    Article  MATH  Google Scholar 

  16. M. S. Park, Y. S. Suh and S. Song, On an implementation of the strain gradient plasticity with linear finite elements and reduced integration, Finite Elements in Analysis and Design, 59 (0) (2012) 35–43.

    Article  MathSciNet  Google Scholar 

  17. H. Gao and Y. Huang, Taylor-based nonlocal theory of plasticity, International Journal of Solids and Structures, 38 (15) (2001) 2615–2637.

    Article  MATH  Google Scholar 

  18. Y. Guo, Y. Huang, H. Gao, Z. Zhuang and K. C. Hwang, Taylor-based nonlocal theory of plasticity: Numerical studies of the micro-indentation experiments and crack tip fields, International Journal of Solids and Structures, 38 (42–43) (2001) 7447–7460.

    Article  MATH  Google Scholar 

  19. G. Weng, The overall elastoplastic stress-strain relations of dual-phase metals, Journal of the Mechanics and Physics of Solids, 38 (3) (1990) 419–441.

    Article  MATH  Google Scholar 

  20. G. Tandon and G. Weng, A theory of particle-reinforced plasticity, Journal of Applied Mechanics, 55 (1988) 126–135.

    Article  Google Scholar 

  21. G. Weng, The theoretical connection between Mori-Tanaka’s theory and the Hashin-Shtrikman-Walpole bounds, International Journal of Engineering Science, 28 (11) (1990) 1111–1120.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Tomota, K. Kuroki, T. Mori and I. Tamura, Tensile deformation of two-ductile-phase alloys: Flow curves of α-γ-Fe-Cr-Ni alloys, Materials Science and Engineering, 24 (1) (1976) 85–94.

    Article  Google Scholar 

  23. Y. Wang, M. Chen, F. Zhou and E. Ma, High tensile ductility in a nanostructured metal, Nature, 419 (6910) (2002) 912–915.

    Article  Google Scholar 

  24. S. K. Joshi, K. T. Ramesh, B. Q. Han and E. J. Lavernia, Modeling the constitutive response of bimodal metals, Metallurgical and Materials Transactions, A 37 (8) (2006) 2397–2404.

    Article  Google Scholar 

  25. J. Llorca, S. Suresh and A. Needleman, An experimental and numerical study of cyclic deformation in metal-matrix composites, Metallurgical and Materials Transactions, A 23 (3) (1992) 919–934.

    Google Scholar 

  26. D. J. Lloyd, Particle reinforced aluminum and magnesium matrix composites, International Materials Reviews, 39 (1) (1994) 1–23.

    Article  Google Scholar 

  27. Y. S. Suh, M. S. Park and S. Song, Modeling of sizedependent strengthening in particle-reinforced aluminum composites with strain gradient plasticity, Transactions of the Korean Society of Mechanical Engineers, A 35 (7) (2011) 745–751.

    Article  Google Scholar 

  28. R. J. Arsenault, S. Fishman and M. Taya, Deformation and fracture behavior of metal-ceramic matrix composite materials, Progress in materials science, 38 (0) (1994) 1–157.

    Article  Google Scholar 

  29. L. Zhou, S. Li and S. Huang, Simulation of effects of particle size and volume fraction on Al alloy strength, elongation, and toughness by using strain gradient plasticity concept, Materials & Design, 32 (1) (2011) 353–360.

    Article  MathSciNet  Google Scholar 

  30. M. Zaiser and E. C. Aifantis, Geometrically necessary dislocations and strain gradient plasticity-a dislocation dynamics point of view, Scripta Materialia, 48 (2) (2003) 133–139.

    Article  Google Scholar 

  31. H. J. Chang, A. Gaubert, M. Fivel, S. Berbenni, O. Bouaziz and S. Forest, Analysis of particle induced dislocation structures using three-dimensional dislocation dynamics and strain gradient plasticity, Computational materials science, 52 (1) (2012) 33–39.

    Article  Google Scholar 

  32. H. Askari, H. M. Zbib and X. Sun, Multiscale Modeling of inclusions and precipitation hardening in metal matrix composites: application to advanced high-strength steels, Journal of Nanomechanics and Micromechanics, 3 (2) (2013) 24–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Shik Park.

Additional information

Recommended by Associate Editor Vikas Tomar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M.S. An enhanced mean field material model incorporating dislocation strengthening for particle reinforced metal matrix composites. J Mech Sci Technol 28, 2587–2594 (2014). https://doi.org/10.1007/s12206-014-0615-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0615-3

Keywords

Navigation