Skip to main content
Log in

Evaluation of Equivalent Bending Stiffness by Simplified Theoretical Solution for an FRP–aluminum Deck–truss Structure

  • Structural Engineering/Technical Note
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

A hybrid Fiber-Reinforced Polymer (FRP)–aluminum spatial deck–truss structure that incorporates an innovative structural form and advanced extrusion-type FRP profiles has the advantages of a lightweight, high-bearing capacity, and faster installation. In this study, a design-oriented investigation was conducted with a simplified theoretical solution to conveniently evaluate the equivalent bending stiffness of the above-mentioned unique structure. The simplified theoretical solution was derived using the equivalent continuum beam method based on the homogenization concept and shearing equivalence principle. The theoretical prediction enabled a direct format and simple calculation process convenient for engineers in terms of the calculation and design. The theoretical solution was experimentally and numerically calibrated to ensure that the formulae have the satisfactory accuracy. The accuracy of the predicted bending stiffness exceeded 90%. The derivation procedures and formulae further indicated that the FRP web diagonals played a key role in resisting the global bending stiffness of the unique structure, and thus, the shear deformation should be considered in the structural design in terms of stiffness-driven. When compared with the conventional calculation method for obtaining the bending stiffness of steel solid-web beams and planar trusses, the proposed method was more accurate and applicable for the unique hybrid structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbes, B. and Guo, Y. Q. (2010). “Analytical homogenization for torsion of orthotropic sandwich plates: Application to corrugated cardboard.” Composite Structures, Vol. 92, No. 3, pp. 699–706, DOI: 10.1016/j.compstruct.2009.09.020.

    Article  Google Scholar 

  • Bai, Y. and Yang, X. (2013). “Novel joint for assembly of all-composite space truss structures: Conceptual design and preliminary study.” Journal of Composite for Construction, Vol. 17, No. 1, pp. 130–138, DOI: 10.1061/(ASCE)CC.1943-5614.0000304.

    Article  Google Scholar 

  • Bao, S. H. and Gong, Y. G. (2006). Structural mechanics, Wuhan University of Technology Press, Wuhan, China.

    Google Scholar 

  • Burgardt, B. and Cartraud, P. (1999). “Continuum modeling of beamlike lattice trusses using averaging methods.” Computers & Structures, Vol. 73, No. 15, pp. 267–279, DOI: 10.1016/S0045-7949(98)00274-0.

    Article  MATH  Google Scholar 

  • Correia, J. R., Bai, Y., and Keller, T. (2015). “A review of the fire behavior of pultruded GFRP structural profiles for civil engineering applications.” Composite Structures, Vol. 127, pp. 267–287, DOI: 10.1016/j.compstruct.2015.03.006.

    Article  Google Scholar 

  • Durfee, R. H. (1986). “Review of triangular cross section truss systems.” Journal of Structural Engineering, Vol. 112, No. 5, pp. 1088–1096, DOI: 10.1061/(ASCE)0733-9445(1986)112:5(1088).

    Article  Google Scholar 

  • Fan, H. L. and Yang, W. (2006). “An equivalent continuum method of lattice structures.” Acta Mechanica Solida Sinica, Vol. 19, No. 2, pp. 103–113, DOI: 10.1007/s10338-006-0612-x.

    Article  Google Scholar 

  • Gand, A. K., Chan, T. M., and Mottram, J. T. (2013). “Civil and structural engineering applications, recent trends, research and developments on pultruded fiber reinforced polymer closed sections: A review.” Frontiers of Structural & Civil Engineering, Vol. 7, No. 3, pp. 227–244, DOI: 10.1007/s11709-013-0216-8.

    Article  Google Scholar 

  • Giannopoulos, G., Vantomme, J., Wastiels, J., and Taerwe, L. (2003). “Numerical analysis and experimental validation for static loads of a composite bridge structure.” Composite Structures, Vol. 62, No. 2, pp. 235–243, DOI: 10.1016/S0263-8223(03)00118-1.

    Article  Google Scholar 

  • Han, L. H., Xu, W., He, S. H., and Tao, Z. (2015). “Flexural behavior of concrete filled steel tubular (SFST) chord to hollow tubular brace truss: Experiments.” Journal of Constructional Steel Research, Vol. 109, pp. 137–151, DOI: 10.1016/j.jcsr.2015.03.002.

    Article  Google Scholar 

  • Huybrechts, S. and Tsai, S.W. (1996). “Analysis and behavior of grid structures.” Composite Science and Technology, Vol. 56, No. 9, pp. 1001–1015, DOI: 10.1016/0266-3538(96)00063-2.

    Article  Google Scholar 

  • Ju, S., Jiang, D. Z., and Shenoi, R. A. (2011). “Flexural properties of lightweight FRP composite truss structures.” Journal of Composite Materials, Vol. 45, No. 19, pp. 1921–1930, DOI: 10.1177/0021998311410237.

    Article  Google Scholar 

  • Keller, T., Bai, Y., and Vallée, T. (2007). “Long-term performance of a glass fiber-reinforced polymer truss bridge.” Journal of Composite for Construction, Vol. 11, No. 1, pp. 99–108, DOI: 10.1061/(ASCE) 1090-0268(2007)11:1(99).

    Article  Google Scholar 

  • Komatsu, S. and Nishimura, N. (1975). “Three dimensional analysis of truss girders by the thin walled elastic beam theory.” Journal of Structural Mechanics and Earthquake Engineering, Vol. 1975, No. 236, pp. 15–29, DOI: 10.2208/jscej1969.1975.238_1.

    Google Scholar 

  • Kostopoulos, V. (2013). “Design and construction of a vehicular bridge made of glass/polyester pultruded box beams.” Plastics, Rubber & Composites, Vol. 34, No. 4, pp. 201–207, DOI: 10.1179/174328905X55641.

    Article  Google Scholar 

  • Li, M., Wu, L. Z., Ma, L., Xiong, J., and Guan, Z. X. (2011). “Torsion of carbon fiber composite pyramidal core sandwich plates.” Composite Structures, Vol. 93, No. 9, pp. 2358–2367, DOI: 10.1016/j.compstruct.2011.03.024.

    Article  Google Scholar 

  • Li, F., Zhang, D. D., Zhao, Q. L., and Deng A. Z. (2015). “A simple analytical solution for predicting the deflection of a hybrid FRPaluminum modular space truss bridge.” Journal of Central South University, Vol. 22, No. 11, pp. 4414–4425, DOI: 10.1007/s11771-015-2989-5.

    Article  Google Scholar 

  • Mccallen, D. B. and Romastad, K. M. (1988). “A continuum model for the nonlinear analysis of beam-like lattice structures.” Computer & Structures, Vol. 29, No. 2, pp. 177–197, DOI: 10.1016/0045-7949 (88)90252-0.

    Article  MATH  Google Scholar 

  • Morcous, G., Cho, Y., El-Safty, A., and Chen, G. (2010). “Structural behavior of FRP sandwich panels for bridge decks.” KSCE Journal of Civil Engineering, Vol. 14, No. 6, pp. 879–888, DOI: 10.1007/s12205-010-1025-4.

    Article  Google Scholar 

  • Noor, A. K. (1988). “Continuum models for repetitive lattice structures.” Applied Mechanics Reviews, Vol. 41, No. 7, pp. 285–296, DOI: 10.1115/1.3151907.

    Article  Google Scholar 

  • Noor, A. K., Anderson, M. S., and Greene, W. H. (1978). “Continuum models for beam-and platelike lattice structures.” Aiaa Journal, Vol. 16, No. 12, pp. 1219–1228, DOI: 10.1115/1.3151907.

    Article  Google Scholar 

  • Reis, A. and Pedro, J. J. O. (2011). “Composite truss bridges: New trends, design and research.” Steel Construction, Vol. 4, No. 3, pp. 176–182, DOI: 10.1002/stco.201110024.

    Article  Google Scholar 

  • Sedlacek, G. and Trumpf, H. (2004). “Development of a lightweight emergency bridge.” Structural Engineering International, Vol. 14, No. 4, pp. 282–287, DOI: 10.2749/101686604777963702.

    Article  Google Scholar 

  • Sun, F. F., Fan, H. L., Zhou, C. W., and Fang, D. N. (2013). “Equivalent analysis and failure prediction of quasi-isotropic composite sandwich cylinder with lattice core under uniaxial compression.” Composite Structures, Vol. 101, pp. 180–190, DOI: 10.1016/j.compstruct.2013.02.005.

    Article  Google Scholar 

  • Teixeira, A. M. A. J., Pfeil, M. S., and Battista, R. C. (2014). “Structural evaluation of a GFRP truss girder for a deployable bridge.” Composite Structures, Vol. 110, pp. 29–38, DOI: 10.1016/j.compstruct.2013.11.014.

    Article  Google Scholar 

  • Teng, J. G., Yu, T., and Fernando, D. (2012). “Strengthening of steel structures with fiber-reinforced polymer composites.” Journal of Constructional Steel Research, Vol. 78, pp. 131–143, DOI: 10.1016/j.jcsr.2012.06.011.

    Article  Google Scholar 

  • Usik, L. (1994). “Equivalent continuum models of large plate-like lattice structures.” International Journal of Solids & Structures, Vol. 31, No. 4, pp. 457–467, DOI: 10.1016/0020-7683(94)90086-8.

    Article  MATH  Google Scholar 

  • Wang, T., Xie, X., Wang, Y., and Shi, P. C. (2014). “Analysis of prestressed composite truss girders with steel truss webs.” Journal of Zhejiang University, Vol. 48, No. 4, pp. 711–720, DOI: 10.3785/j.issn.1008-973X.2014.04.022.

    Article  Google Scholar 

  • Xiong, B., Luo, X. L., and Tan, H. F. (2015). “Analysis of torsional stiffness of all-composite truss.” Acta Materiae Composite Sinica, Vol. 32, No. 2, pp. 501–507, DOI: 10.13801/j.cnki.fhclxb.20140627.003.

    Google Scholar 

  • Zhang, D. D. (2016). Load-carrying properties and calculation methods of a novel hybrid FRP-metal space truss bridge, PhD Thesis, PLA Univ. of Sci. & Tech, Nanjing, China.

    Google Scholar 

  • Zhang, D. D., Zhao, Q. L., Huang, Y. X., Li, F., Chen H. S., and Miao, D. S. (2014). “Flexural properties of a lightweight hybrid FRPaluminum modular space truss bridge system.” Composite Structures, Vol. 108, pp. 600–615, DOI: 10.1016/j.compstruct.2013.09.058.

    Article  Google Scholar 

  • Zhang, D. D., Zhao, Q. L., Li, F., Gao, Y. F., and Tao, J. (2018). “Torsional behavior of a hybrid FRP-aluminum space truss bridge: Experimental and numerical study.” Engineering Structures, Vol. 157, pp. 132–143, DOI: 10.1016/j.engstruct.2017.12.013.

    Article  Google Scholar 

  • Zhang, D. D., Zhao, Q. L., Li, F., and Li, F. (2016). “Experimental and theoretical study of the torsional mechanism of a hybrid FRPaluminum triangular deck-truss structure.” KSCE Journal of Civil Engineering, Vol. 26, No. 6, pp. 2447–2456, DOI: 10.1007/s12205-015-0257-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Li, F., Shao, F. et al. Evaluation of Equivalent Bending Stiffness by Simplified Theoretical Solution for an FRP–aluminum Deck–truss Structure. KSCE J Civ Eng 23, 367–375 (2019). https://doi.org/10.1007/s12205-018-1093-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-1093-4

Keywords

Navigation