Skip to main content
Log in

Braess’ paradox in the uncertain demand and congestion assumed Stochastic Transportation Network Design Problem

  • Transportation Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

In this study, we examine Braess’ paradox in the context of a Stochastic Transportation Network Design Problem (NDP). In conventional NDPs, major variables such as link travel time and traffic flows are considered to be deterministic. However, in the real world, due to variations in traffic patterns, travelers experience different travel times. To account for this variation, in this study Monte Carlo simulation is employed to incorporate the probabilistic nature of travel demand. A new objective function for the NDP is formulated based on the probabilistic definition of link flows, and the design results are compared with the results obtained from conventional formulations. This new model is used to analyze Braess’ paradox, a well-known counter intuitive network phenomenon. Our results indicate that Braess’ paradox is more likely to be observed in our model, as there are more uncertainties in travel demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulaal, M. and LeBlanc, L. J. (1979). “Continuous equilibrium network design models.” Transp. Res. Part B, Vol. 13, No. 1, pp. 19–32, DOI: 10.1016/0191-2615(79)90004-3.

    Article  MATH  Google Scholar 

  • Asakura, Y. and Hato, E. (2001). “A route recognition model for transport network reliability analysis.” Edited by Bell, M. G. H. and Cassir, C. (Eds.), Reliability of Transport Networks, pp. 203–216, Research Study Press.

    Google Scholar 

  • Braess, D., Nagurney, A., and Wakolbinger, T. (2005). “On a paradox of traffic planning.” Transp. Sci., Vol. 39, No. 4, pp. 446–450. (Translated from original German: D., Braess, “Über ein Paradoxon aus der Verkehrsplanung.” Unternehmensforschung, Vol. 12, pp. 258–268 (1968), DOI 10.1287/trsc.1050.0127.

    Article  Google Scholar 

  • Chen, A. and Xu, X. (2012). “Goal programming approach to solving the network design problem with multiple objectives and demand uncertainty.” Expert Systems with Applications, Vol. 39, No. 4, pp. 4160–4170.

    Article  Google Scholar 

  • Chen, A. and Yang, C. (2004). “Stochastic transportation network design problem with spatial equity constraint.” Transportation Research Record, No. 1882, pp. 97–104.

    Article  Google Scholar 

  • Chen, A., Chootinan, P., and Wong, S. C. (2006). “New reserve capacity model of a signal-controlled road network.” Transportation Research Record, No. 1964, pp. 35–41.

    Article  Google Scholar 

  • Chen, A., Kim, J., Lee, S., and Kim, Y. (2010). “Stochastic multi-objective models for network design problem.” Expert systems with applications, Vol. 37, No. 2, 1608–1619, DOI: 10.1016/j.eswa.2009. 06.048.

    Article  Google Scholar 

  • Chen, A., Kim, J., Zhou, Z., and Chootinan, P. (2007). “Alpha reliable network design problem.” Transportation Research Record, No. 2029, pp. 49–57.

    Article  Google Scholar 

  • Chen, A., Subprasom, K., and Ji, Z. W. (2003). “Mean-Variance model for the Build-Operate-Transfer scheme under demand uncertainty.” Transportation Research Record., No. 1857, pp. 93–101, DOI: 10.3141/1857-11.

    Article  Google Scholar 

  • Chen, A., Yang, H., Lo, H. K., and Tang, W. H. (2002). “Capacity reliability of a road network: An assessment methodology and numerical results.” Transp. Res. Part B, Vol. 36, No. 3, pp. 225–252, DOI: 10.1016/S0191-2615(00)00048-5.

    Article  Google Scholar 

  • Chen, A., Zhou, Z., Chootinan, P., Ryu, S., Yang, C., and Wong, S. C. (2011). “Transport network design problem under uncertainty: A review and new developments.” Transport Reviews, 2011, Vol. 31, No. 6, pp. 743–768.

    Article  Google Scholar 

  • Chootinan, P., Wong, S. C., and Chen, A. (2005). “A reliability-based network design problem.” Journal of Advanced Transportation, Vol. 39, No. 3, pp. 247–270.

    Article  Google Scholar 

  • Clark, S. D. and Watling, D. P. (2005). “Modeling network travel time reliability under stochastic demand.” Transp. Res. Part B, Vol. 39, No. 2, pp. 119–140, DOI: 10.1016/j.trb.2003.10.006.

    Article  Google Scholar 

  • Harker, P. T. and Friesz, T. L. (1986). “Prediction of intercity freight flows, I: Theory.” Transportation Research Part B: Methodological, Vol. 20, No. 2, pp. 139–153.

    Article  MathSciNet  Google Scholar 

  • Hazelton, M. L. (2003). “Some comments on origin-destination matrix estimation.” Transp. Res. Part A, Vol. 37, No. 10, pp. 811–822, DOI: 10.1016/S0965-8564(03)00044-2.

    Google Scholar 

  • Kim, H. (2008). “New dynamic travel demand modeling methods in advanced data collecting environments.” Ph.D. dissertation, Univ. of California, Irvine.

    Google Scholar 

  • Kim, H. and Lim, Y. (2012). “A day-to-day route choice model based on driver’s past experience.” KSCE Journal of Civil Engineering, Vol. 16, No. 7, pp. 1267–1279, DOI: 10.1007/s12205-012-1285-2.

    Article  Google Scholar 

  • Lam, W. H. K., Shao, H., and Sumalee, A. (2008). “Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply.” Transp. Res. Part B, Vol. 42, No. 10, pp. 890–910, DOI: 10.1016/j.trb.2008.02.004.

    Article  Google Scholar 

  • Lee, S., Moon, B., and Asakura, Y. (2000). “Reliability analysis and calculation on large scale transport networks.” Edited by Bell, M.G.H. and Cassir, C. (Eds.), Reliability of Transport Networks, pp 173–190, Research Study Press.

    Google Scholar 

  • Lo, H. K. and Tung, Y. K. (2003). “Network with degradable links: Capacity analysis and design.” Transp. Res. Part B, Vol. 37, No. 4, pp. 345–363, DOI: 10.1016/S0191-2615(02)00017-6.

    Article  Google Scholar 

  • Oh, T., Kim, H., and Park, D. (2011). “Bi-objective network optimization for spatial and temporal coordination of multiple highway construction projects.” KSCE Journal of Civil Engineering, Vol. 15, No. 8, pp. 1449–1455, DOI: 10.1007/s12205-011-1428-x.

    Article  Google Scholar 

  • Pas, E. I. and Principio, S. L. (1997). “Braess’ Paradox: some new insights.” Transp. Res. Part B, Vol. 31, No. 3, pp. 265–276, DOI: 10.1016/S0191-2615(96)00024-0.

    Article  Google Scholar 

  • Prashker, J. N. and Bekhor, S. (2000). “Some observations on stochastic user equilibrium and system optimum of traffic assignment.” Transp. Res. Part B, Vol. 34, No. 4, pp. 277–291, DOI: 10.1016/S0191-2615(99)00025-9.

    Article  Google Scholar 

  • Ryu, S., Chen, A., and Kim, Y. (2013). “Investigating travel time reliability measures in toll design problem.” Asian Transport Studies, Vol. 2, No. 3, pp. 253–268.

    Google Scholar 

  • Sheffi, Y. and Daganzo, C. F. (1978). “Another “paradox” of traffic flow.” Transp. Res., Vol. 12, No. 1, pp. 43–46, DOI: 10.1016/0041-1647(78)90106-5.

    Article  Google Scholar 

  • Siu, B. W. Y. and Lo, H. K. (2008). “Doubly uncertain transportation network: Degradable capacity and stochastic demand.” Eur. Oper. Res., Vol. 191, No. 1, pp. 166–181, DOI:10.1016/j.ejor.2007.08.026.

    Article  MathSciNet  MATH  Google Scholar 

  • Sumalee, A., Watling, D. P., and Nakayama, S. (2006). “Reliable network design problem: The case with stochastic demand and total travel time reliability.” Transp. Res. Rec., Vol. 1964, pp. 81–90, DOI: 10.3141/1964-10.

    Article  Google Scholar 

  • Suwansirikul, C., Friesz, T. L., and Tobin, R. L. (1987). “Equilibrium decomposed optimization: A heuristic for the continuous equilibrium network design problem.” Transp. Sci., Vol. 21, No. 4, pp. 254–263, DOI: 10.1287/TRSC.21.4.254.

    Article  MATH  Google Scholar 

  • Ukkusuri, S. V., Mathew, T. V., and Waller S. T. (2007). “Robust transportation network design under demand uncertainty.” Comput. Aided Civ. Infrastruct. Eng., Vol. 22, pp. 6–18, DOI: 10.1111/j.1467-8667.2006.00465.x.

    Article  Google Scholar 

  • Waller, S. T., Schofer, J. L., and Ziliaskopoulos, A. K. (2001). “Evaluation with traffic assignment under demand uncertainty.” J. Transp. Res. Board, Vol. 1771, pp. 69–74, DOI: 10.3141/1771-09.

    Article  Google Scholar 

  • Xu, X., Chen, A., and Cheng, L. (2013). “Stochastic network design problem with fuzzy goals.” Transportation Research Record, No. 2399, pp. 23–33.

    Article  Google Scholar 

  • Yang, H. and Bell, M. G. H. (1998). “Models and algorithms for road network design: A review and some new developments.” Transportation, Vol. 18, No. 3, pp. 257–278, DOI: 10.1080/01441649808717016.

    Google Scholar 

  • Yao, J. and Chen, A. (2014). “An analysis of logit and weibit route choices in stochastic assignment paradox.” Transportation Research Part B, Vol. 69, No. 1, pp. 31–49.

    Article  Google Scholar 

  • Yim, K., Wong, S. C., Chen, A., Wong, C. K., and Lam, W. H. K. (2011). “A reliability-based land use and transportation optimization model.” Transportation Research Part C, Vol. 19, No. 2, pp. 351–362.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunmyung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiratanapakhom, T., Kim, H., Nam, D. et al. Braess’ paradox in the uncertain demand and congestion assumed Stochastic Transportation Network Design Problem. KSCE J Civ Eng 20, 2928–2937 (2016). https://doi.org/10.1007/s12205-016-0265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0265-3

Keywords

Navigation