Skip to main content
Log in

Improvements in engineering properties of soils through microbial-induced calcite precipitation

  • Research Paper
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Microbial-Induced Calcite Precipitation (MICP) has recently emerged as a sustainable technique for soil improvement. This paper aims to study the effectiveness of MICP in improving the shear strength and reducing the hydraulic conductivity of soils. A species of Bacillus group, B. megaterium was used to trigger the calcite precipitation. The experimental variables included soil types (tropical residual soil and sand), soil densities (85%, 90%, and 95% of their respective maximum densities), and treatment conditions (untreated, treated with cementation reagents only, treated with B. megaterium only, and treated with B. megaterium and cementation reagents). The results showed that MICP could effectively improve shear strength and reduce hydraulic conductivity for both residual soil and sand. The improvements, however, varied with soil densities, soil types, and treatment conditions. With MICP treatment, the improvement ratios in shear strength of the residual soil specimens were significantly higher (1.41–2.64) than those of the sand specimens (1.14–1.25). On the contrary, the sand specimens resulted in greater hydraulic conductivity reduction ratios (0.09–0.15) than those of the residual soil specimens (0.26–0.45). These observations can be explained by the particle-particle contacts per unit volume and pore spaces in the soil specimens. Both soil specimens when treated with cementation reagents only exhibited slight alterations in the shear strength (ranging from 1.06–1.33) and hydraulic conductivity (ranging from 0.69–0.95). The results implied that natural calcite forming microorganisms only exist for insignificant amount. The amount of calcite precipitated in the treated residual soil specimens ranged from 1.080% to 1.889%. The increments of calcite content in the treated sand specimens were comparatively higher, ranging from 2.661% to 6.102%. The results from Scanning Electron Microscope (SEM) analysis confirmed the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achal, V., Mukherjee, A., Basu, P. C., and Reddy, M. S. (2009). “Strain improvement of Sporosarcina Pasteurii for enhanced urease and calcite production.” J. Ind. Microbiol. Biotechnol., Vol. 36, No. 7, pp. 981–988.

    Article  Google Scholar 

  • Achal, V., Pan, X., and Özyurt, N. (2011). “Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation.” Ecol. Eng., Vol. 37, No. 4, pp. 554–559.

    Article  Google Scholar 

  • Anagnostopoulos, C. and Hadjispyrou, S. (2004). “Laboratory study of an epoxy resin grouted sand.” Ground Improv., Vol. 8, No. 1, pp. 39–45.

    Article  Google Scholar 

  • ASTM (2000). ASTM D 4253-00, Standard test methods for maximum index density and unit weight of soils using a vibratory table, American Society for Testing and Materials.

    Google Scholar 

  • ASTM (2000). ASTM D 4254-00, Standard test methods for minimum index density and unit weight of soils and calculation of relative density, American Society for Testing and Materials.

    Google Scholar 

  • Basha, E. A., Hashim, R., Mahmud, H. B., and Muntohar, A. S. (2005). “Stabilization of residual soil with rice husk ash and cement.” Constr. Build. Mater., Vol. 19, No. 6, pp. 448–453.

    Article  Google Scholar 

  • Baskar, S., Baskar, R., Mauclaire, L., and Mckenzie, J. A. (2006). “Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India.” Curr. Sci., Vol. 90, No. 1, pp. 58–64.

    Google Scholar 

  • Baveye, P., Vandevivere, P., Hoyle, B., DeLeo, P., and de Lozada, D. S. (1998). “Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials.” Crit. Rev. Environ. Sci. Technol., Vol. 28, No. 2, pp. 123–191.

    Article  Google Scholar 

  • Brassington, R. (1988). Field hydrogeology, Halsted Press, New York.

    Google Scholar 

  • BSI (1990). British standard 1377: 1990, Methods of test for soils for civil engineering purposes, BSI Group, United Kingdom.

    Google Scholar 

  • Castainer, S., Le Métayer-Levrel, G., and Perthuisot, J.-P. (1999). “Cacarbonates precipitation and limestone genesis — The microbiogeologist point of view.” Sediment. Geol., Vol. 126, Nos. 1–4, pp. 9–23.

    Google Scholar 

  • Dejong, J. T., Fritzges, M. B., and Nüsslein, K. (2006). “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng., Vol. 132, No. 11, pp. 1381–1392.

    Article  Google Scholar 

  • Dejong, J. T., Mortensen, B. M., Martinez, B. C., and Nelson, D. C. (2010). “Bio-mediated soil improvement.” Ecol. Eng., Vol. 36, No. 2, pp. 197–210.

    Article  Google Scholar 

  • De Muynck, W., De Belie, N., and Verstraete, W. (2010). “Microbial carbonate precipitation in construction materials: A review.” Ecol. Eng., Vol. 36, No. 2, pp. 118–136.

    Article  Google Scholar 

  • Ehrlich, H. L. (1999). “Past, present and future of biohydrometallurgy.” Process Metallurgy, R. Amils, and A. Ballester, eds., Elsevier, pp. 3–12.

    Google Scholar 

  • Hammes, F., Boon, N., de Villiers, J., Verstraete, W., and Siciliano, S. D. (2003). “Strain-specific ureolytic microbial calcium carbonate precipitation.” Appl. Environ. Microbiol., Vol. 69, No. 8, pp. 4901–4909.

    Article  Google Scholar 

  • Harkes, M. P., Van Paassen, L. A., Booster, J. L., Whiffin, V. S., and Van Loosdrecht, M. C. M. (2010). “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecol. Eng., Vol. 36, No. 2, pp. 112–117.

    Article  Google Scholar 

  • Ho, M. H., and Chan, C. M. (2011). “Some mechanical properties of cement stabilized malaysian soft clay.” World Acad. Sci. Eng. Technol., Vol. 74, No., pp. 24–31.

    Google Scholar 

  • Huat, B. B. K. (2006). “Deformation and shear strength characteristics of some tropical peat and organic soils.” Pertanika J. Sci. Technol., Vol. 14, Nos. 1–2, pp. 61–74.

    Google Scholar 

  • Ivanov, V. and Chu, J. (2008). “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Biotechnol., Vol. 7, No. 2, pp. 139–153.

    Article  Google Scholar 

  • Karol, R. H. (2003). Chemical grouting and soil stabilization, M. Dekker, New York.

    Book  Google Scholar 

  • Kazemian, S. and Huat, B. B. K. (2009). “Assessment and comparison of grouting and injection methods in geotechnical engineering.” Eur. J. Sci. Res., Vol. 27, No. 2, pp. 234–247.

    Google Scholar 

  • Kazemian, S., Huat, B. B. K., Prasad, A., and Barghchi, M. (2011). “A state of art review of peat geotechnical engineering perspective.” Int. J. Phys. Sci., Vol. 6, No. 8, pp. 1974–1981.

    Google Scholar 

  • Krebs, R. D. and Walker, R. D. (1971). Highway materials, McGraw-Hill, New York.

    Google Scholar 

  • Leonards, G. A. (1962). Foundation engineering, McGraw-Hill, New York.

    Google Scholar 

  • Lian, B., Hu, Q., Chen, J., Ji, J., and Teng, H. (2006). “Carbonate biomineralization induced by soil bacterium Bacillus megaterium.” Geochim. Cosmochim. Acta, Vol. 70, No. 22, pp. 5522–5535.

    Article  Google Scholar 

  • Lu, W., Qian, C., and Wang, R. (2010). “Study on soil solidification based on microbiological precipitation of CaCO3.” Sci. China Technol. Sci., Vol. 53, No. 9, pp. 2372–2377.

    Article  MathSciNet  Google Scholar 

  • Martinez, B. C., Barkouki, T. H., Dejong, J. D., and Ginn, T. R. (2011). “Upscaling of microbial induced calcite precipitation in 0.5 m columns experimental and modeling results.” Geo-Frontiers 2011, pp. 4049–4059.

    Google Scholar 

  • Mitchell, J. K. and Santamarina, J. C. (2005). “Biological considerations in geotechnical engineering.” Journal Geotech. Geoenviron. Eng., Vol. 131, No. 10, pp. 1222–1233.

    Article  Google Scholar 

  • Okwadha, G. D. and Li, J. (2010). “Optimum conditions for microbial carbonate precipitation.” Chemosphere, Vol. 81, No. 9, pp. 1143–1148.

    Article  Google Scholar 

  • Peethamparan, S., Olek, J., and Diamond, S. (2009). “Mechanism of stabilization of Na-montmorillonite clay with cement kiln dust.” Cem. Concr. Res., Vol. 39, No. 7, pp. 580–589.

    Article  Google Scholar 

  • Qabany, A. A., Mortensen, B., Martinez, B., Soga, K., and Dejong, J. (2011). “Microbial carbonate precipitation correlation of s-wave velocity with calcite precipitation.” Geo-Frontiers 2011, pp. 3993–4001.

    Google Scholar 

  • Stocks-Fischer, S., Galinat, J. K., and Bang, S. S. (1999). “Microbiological precipitation of CaCO3.” Soil Biol. Biochem., Vol. 31, No. 11, pp. 1563–1571.

    Article  Google Scholar 

  • Stoner, D. L., Watson, S. M., Stedtfeld, R. D., Meakin, P., Griffel, L. K., Tyler, T. L., Pegram, L. M., Barnes, J. M., and Deason, V. A. (2005). “Application of stereolithographic custom models for studying the impact of biofilms and mineral precipitation on fluid flow.” Appl. Environ. Microbiol., Vol. 71, No. 12, pp. 8721–8728.

    Article  Google Scholar 

  • Tan, L. P., Lee, C. Y., and Sivadass, T. (2008). “Parametric study of residual soil slope stability.” International Conference on Construction and Building Technology 2008, 16–20 Jun 2008, UniTen, Malaysia, pp. 33–42.

    Google Scholar 

  • Van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., and van Loosdrecht, M. C. M. (2010). “Potential soil reinforcement by biological denitrification.” Ecol. Eng., Vol. 36, No. 2, pp. 168–175.

    Article  Google Scholar 

  • Van Tittelboom, K., De Belie, N., De Muynck, W., and Verstraete, W. (2010). “Use of bacteria to repair cracks in concrete.” Cem. Concr. Res., Vol. 40, No. 1, pp. 157–166.

    Article  Google Scholar 

  • Whiffin, V. S., van Paassen, L. A., and Harkes, M. P. (2007). “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. Journal, Vol. 24, No. 5, pp. 417–423.

    Article  Google Scholar 

  • Wittmann, C. and Krull, R. (2010). Biosystems engineering I: Creating superior biocatalysts, Advances in Biochemical Engineering / Biotechnology, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.

    Book  Google Scholar 

  • Xanthakos, P. P., Abramson, L. W., and Bruce, D. A. (1994). Ground control and improvement, J. Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Min Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soon, N.W., Lee, L.M., Khun, T.C. et al. Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE J Civ Eng 17, 718–728 (2013). https://doi.org/10.1007/s12205-013-0149-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-013-0149-8

Keywords

Navigation