Skip to main content
Log in

Myosin II Adjusts Motility Properties and Regulates Force Production Based on Motor Environment

  • S.I. : 2022 CMBE Young Innovators
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Myosin II has been investigated with optical trapping, but single motor-filament assay arrangements are not reflective of the complex cellular environment. To understand how myosin interactions propagate up in scale to accomplish system force generation, we devised a novel actomyosin ensemble optical trapping assay that reflects the hierarchy and compliancy of a physiological environment and is modular for interrogating force effectors.

Methods

Hierarchical actomyosin bundles were formed in vitro. Fluorescent template and cargo actin filaments (AF) were assembled in a flow cell and bundled by myosin. Beads were added in the presence of ATP to bind the cargo AF and activate myosin force generation to be measured by optical tweezers.

Results

Three force profiles resulted across a range of myosin concentrations: high force with a ramp-plateau, moderate force with sawtooth movement, and baseline. The three force profiles, as well as high force output, were recovered even at low solution concentration, suggesting that myosins self-optimize within AFs. Individual myosin steps were detected in the ensemble traces, indicating motors are taking one step at a time while others remain engaged in order to sustain productive force generation.

Conclusions

Motor communication and system compliancy are significant contributors to force output. Environmental conditions, motors taking individual steps to sustain force, the ability to backslip, and non-linear concentration dependence of force indicate that the actomyosin system contains a force-feedback mechanism that senses the local cytoskeletal environment and communicates to the individual motors whether to be in a high or low duty ratio mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AF:

Actin filament

OT:

Optical tweezers, optical trapping

SM:

Single molecule

References

  1. Akhshi, T. K., D. Wernike, and A. Piekny. Microtubules and actin crosstalk in cell migration and division. Cytoskeleton. 71:1–23, 2014.

    Article  Google Scholar 

  2. Al Azzam, O., C. L. Trussell, and D. N. Reinemann. Measuring force generation within reconstituted microtubule bundle assemblies using optical tweezers. Cytoskeleton. 78:111–125, 2021.

    Article  Google Scholar 

  3. Albert, P. J., T. Erdmann, and U. S. Schwarz. Stochastic dynamics and mechanosensitivity of myosin II minifilaments. New J. Phys. 16:093019, 2014.

    Article  Google Scholar 

  4. Appleyard, D. C., K. Y. Vandermeulen, H. Lee, and M. J. Lang. Optical trapping for undergraduates. Am. J. Phys. 75:5–14, 2007. https://doi.org/10.1119/1.2366734.

    Article  Google Scholar 

  5. Balikov, D. A., et al. The nesprin-cytoskeleton interface probed directly on single nuclei is a mechanically rich system. Nucleus. 1034:1–14, 2017. https://doi.org/10.1080/19491034.2017.1322237.

    Article  Google Scholar 

  6. Brady, S. K., S. Sreelatha, Y. Feng, S. P. S. Chundawat, and M. J. Lang. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps. Nat. Commun. 6:1–9, 2015.

    Article  Google Scholar 

  7. Braun, M., Z. Lansky, G. Fink, F. Ruhnow, S. Diez, and M. E. Janson. Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat. Cell Biol. 13:1259–1264, 2011.

    Article  Google Scholar 

  8. Braun, M., Z. Lansky, F. Hilitski, Z. Dogic, and S. Diez. Entropic forces drive contraction in cytoskeletal networks. BioEssays. 38:474–481, 2016.

    Article  Google Scholar 

  9. Cordova, J. C., et al. Bioconjugated core-shell microparticles for high-force optical trapping. Part. Part. Syst. Charact. 35:1–8, 2018.

    Article  MathSciNet  Google Scholar 

  10. Debold, E. P., S. Walcott, M. Woodward, and M. A. Turner. Direct observation of phosphate inhibiting the force-generating capacity of a miniensemble of myosin molecules. Biophys. J. 105:2374–2384, 2013. https://doi.org/10.1016/j.bpj.2013.09.046.

    Article  Google Scholar 

  11. Dong, J., C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist. Optical trapping with high forces reveals unexpected behaviors of prion fibrils. Nat. Struct. Mol. Biol. 17:1422–1430, 2010. https://doi.org/10.1038/nsmb.1954.

    Article  Google Scholar 

  12. Duke, T. A. J. Molecular model of muscle contraction. Proc. Natl. Acad. Sci. U.S.A. 96:2770–2775, 1999.

    Article  Google Scholar 

  13. Elting, M. W., and J. A. Spudich. Future challenges in single-molecule fluorescence and laser trap approaches to studies of molecular motors. Dev. Cell. 23:1084–1091, 2012. https://doi.org/10.1016/j.devcel.2012.10.002.

    Article  Google Scholar 

  14. Ennomani, H., et al. Architecture and connectivity govern actin network contractility. Curr. Biol. 26:616–626, 2016.

    Article  Google Scholar 

  15. Erdmann, T., and U. S. Schwarz. Stochastic force generation by small ensembles of myosin II motors. Phys. Rev. Lett. 108:1–5, 2012.

    Article  Google Scholar 

  16. Finer, J. T., et al. Characterization of single actin-myosin interactions. Biophys. J. 68:291–296, 1995.

    Google Scholar 

  17. Finer, J. T., R. M. Simmons, and J. A. Spudich. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 368:113–119, 1994.

    Article  Google Scholar 

  18. Fordyce, P. M., M. T. Valentine, and S. M. Block. Advances in surface-based assays for single molecules. Single-Mol. Tech. A. 17:431–460, 2008.

    Google Scholar 

  19. Galkin, V. E., A. Orlova, and E. H. Egelman. Actin filaments as tension sensors. Curr. Biol. 22:R96–R101, 2012. https://doi.org/10.1016/j.cub.2011.12.010.

    Article  Google Scholar 

  20. Gittes, F., E. Meyhöfer, S. Baek, and J. Howard. Directional loading of the kinesin motor molecule as it buckles a microtubule. Biophys. J. 70:418–429, 1996.

    Article  Google Scholar 

  21. Greenberg, M. J., and J. R. Moore. The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton. 67:273–285, 2010.

    Article  Google Scholar 

  22. Guérin, T., J. Prost, P. Martin, and J. F. Joanny. Coordination and collective properties of molecular motors: theory. Curr. Opin. Cell Biol. 22:14–20, 2010.

    Article  Google Scholar 

  23. Guo, B., and W. H. Guilford. The tail of myosin reduces actin filament velocity in the in vitro motility assay. Cell Motil. Cytoskeleton. 59:264–272, 2004.

    Article  Google Scholar 

  24. Hartman, M. A., and J. A. Spudich. The myosin superfamily at a glance. J. Cell Sci. 125:1627–1632, 2012. https://doi.org/10.1242/jcs.094300.

    Article  Google Scholar 

  25. Hilbert, L., S. Cumarasamy, N. B. Zitouni, M. C. Mackey, and A. M. Lauzon. The kinetics of mechanically coupled myosins exhibit group size-dependent regimes. Biophys. J. 105:1466–1474, 2013. https://doi.org/10.1016/j.bpj.2013.07.054.

    Article  Google Scholar 

  26. Hooft, A. M., E. J. Maki, K. K. Cox, and J. E. Baker. An accelerated state of myosin-based actin motility. Biochemistry. 46:3513–3520, 2007.

    Article  Google Scholar 

  27. Hooijman, P., M. A. Stewart, and R. Cooke. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys. J. 100:1969–1976, 2011.

    Article  Google Scholar 

  28. Howard, J. Mechanics of Motor Proteins and the Cytosksleton. Appl. Mech. Rev. 55(2):B39–B39, 2001.

    Article  Google Scholar 

  29. Huxley, H. E. Fifty years of muscle and the sliding filament hypothesis. Eur. J. Biochem. 271:1403–1415, 2004.

    Article  Google Scholar 

  30. Jackson, D. R., and J. E. Baker. The energetics of allosteric regulation of ADP release from myosin heads. Phys. Chem. Chem. Phys. 11:4808–4814, 2009.

    Article  Google Scholar 

  31. Kad, N. M., S. Kim, D. M. Warshaw, P. VanBuren, and J. E. Baker. Single-myosin crossbridge interactions with actin filaments regulated by troponin-tropomyosin. Proc. Natl. Acad. Sci. U.S.A. 102:16990–16995, 2005.

    Article  Google Scholar 

  32. Kaya, M., and H. Higuchi. Nonlinear elasticity and an 8-nm working stroke of single myosin molecules in myofilaments. Science (80-). 329:686–689, 2010.

    Article  Google Scholar 

  33. Kaya, M., Y. Tani, T. Washio, T. Hisada, and H. Higuchi. Coordinated force generation of skeletal myosins in myofilaments through motor coupling. Nat. Commun. 8:1–13, 2017. https://doi.org/10.1038/ncomms16036.

    Article  Google Scholar 

  34. Kron, S. J., T. Q. P. Uyeda, H. M. Warrick, and J. A. Spudich. An approach to reconstituting motility of single myosin molecules. J. Cell Sci. 98:129–133, 1991.

    Article  Google Scholar 

  35. Lansky, Z., et al. Diffusible crosslinkers generate directed forces in microtubule networks. Cell. 160:1159–1168, 2015.

    Article  Google Scholar 

  36. Leibler, S., and D. A. Huse. Porters versus rowers: a unified stochastic model of motor proteins. J. Cell Biol. 121:1357–1368, 1993.

    Article  Google Scholar 

  37. Liu, C., M. Kawana, D. Song, K. M. Ruppel, and J. A. Spudich. Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level. Nat. Struct. Mol. Biol. 25:505–514, 2018. https://doi.org/10.1038/s41594-018-0069-x.

    Article  Google Scholar 

  38. Lüdecke, A., A. Seidel, M. Braun, and S. Diez. Diffusive tail anchorage determines velocity and force produced by kinesin-14 between crosslinked microtubules. Nat. Commun. 9:2214, 2018.

    Article  Google Scholar 

  39. Mansoon, A., M. Balaz, N. Albet-Torres, and K. J. Rosengren. In vitro assays of molecular motors—impact of motor-surface interactions. Front. Biosci. 13:5732–5754, 2008.

    Article  Google Scholar 

  40. Miller-Jaster, K. N., C. E. Petrie Aronin, and W. H. Guilford. A quantitative comparison of blocking agents in the in vitro motility assay. Cell. Mol. Bioeng. 5:44–51, 2012.

    Article  Google Scholar 

  41. Mitsuka, M., T. Yamada, and H. Shimizu. On the contraction of myosin-extracted skinned single fibers with active myosin fragments. J. Biochem. 85:559–565, 1979.

    Article  Google Scholar 

  42. O’Connell, C. B., M. J. Tyska, and M. S. Mooseker. Myosin at work: Motor adaptations for a variety of cellular functions. Biochim. Biophys. Acta - Mol. Cell Res. 1773:615–630, 2007.

    Article  Google Scholar 

  43. Persson, M., et al. Heavy meromyosin molecules extending more than 50 nm above adsorbing electronegative surfaces. Langmuir. 26:9927–9936, 2010.

    Article  Google Scholar 

  44. Piazzesi, G., et al. Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell. 131:784–795, 2007.

    Article  Google Scholar 

  45. Pollard, T. D. Mechanics of cytokinesis in eukaryotes. Curr. Opin. Cell Biol. 22:50–56, 2010. https://doi.org/10.1016/j.ceb.2009.11.010.

    Article  Google Scholar 

  46. Rahman, M. A., A. Salhotra, and A. Månsson. Comparative analysis of widely used methods to remove nonfunctional myosin heads for the in vitro motility assay. J. Muscle Res. Cell Motil. 39:175–187, 2018. https://doi.org/10.1007/s10974-019-09505-1.

    Article  Google Scholar 

  47. Rasicci, D. V., et al. Dilated cardiomyopathy mutation E525K in human beta-cardiac myosin stabilizes the interacting heads motif and super-relaxed state of myosin. BioRxiv. 10:1465, 2022.

    Google Scholar 

  48. Rauch, P., and T. Jähnke. Optical tweezers for quantitative force measurements and live cell experiments. Micros. Today. 22:24–31, 2014.

    Article  Google Scholar 

  49. Reinemann, D. N., et al. Collective force regulation in anti-parallel microtubule gliding by dimeric Kif15 kinesin motors. Curr. Biol. 27:2810-2820.e6, 2017.

    Article  Google Scholar 

  50. Reinemann, D. N., S. R. Norris, R. Ohi, and M. J. Lang. Processive kinesin-14 HSET exhibits directional flexibility depending on motor traffic. Curr. Biol. 28:2356-2362.e5, 2018. https://doi.org/10.1016/j.cub.2018.06.055.

    Article  Google Scholar 

  51. Ruegg, C., C. Veigel, J. E. Molloy, S. Schmitz, J. C. Sparrow, and R. H. A. Fink. Molecular motors: Force and movement generated by single myosin II molecules. Physiology. 17:213–218, 2002. https://doi.org/10.1152/nips.01389.2002.

    Article  Google Scholar 

  52. Santos, A., Y. Shauchuk, U. Cichoń, and K. C. Vavra. How actin tracks affect myosin motors. In: Myosins, edited by L. M. Coluccio. Cham: Springer, 2020, pp. 183–197.

    Chapter  Google Scholar 

  53. Schmid, M., and C. N. Toepfer. Cardiac myosin super relaxation (SRX): a perspective on fundamental biology, human disease and therapeutics. Biol. Open. 10:1–11, 2021.

    Article  Google Scholar 

  54. Spudich, J. A. The myosin swinging cross-bridge model. Nat. Rev. Mol. Cell Biol. 2:387–392, 2001.

    Article  Google Scholar 

  55. Spudich, J. A., J. Finer, B. Simmons, K. Ruppel, B. Patterson, and T. Uyeda. Myosin structure and function. Cold Spring Harb. Symp. Quant. Biol. LX:783–791, 1995.

    Article  Google Scholar 

  56. Stachowiak, M. R., et al. Self-organization of myosin II in reconstituted actomyosin bundles. Biophys. J. 103:1265–1274, 2012. https://doi.org/10.1016/j.bpj.2012.08.028.

    Article  Google Scholar 

  57. Stam, S., J. Alberts, M. L. Gardel, and E. Munro. Isoforms confer characteristic force generation and mechanosensation by myosin II filaments. Biophys. J. 108:1997–2006, 2015. https://doi.org/10.1016/j.bpj.2015.03.030.

    Article  Google Scholar 

  58. Stewart, M. A., K. Franks-Skiba, S. Chen, and R. Cooke. Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. Proc. Natl. Acad. Sci. U.S.A. 107:430–435, 2010.

    Article  Google Scholar 

  59. Stewart, T. J., V. Murthy, S. P. Dugan, and J. E. Baker. Velocity of myosin-based actin sliding depends on attachment and detachment kinetics and reaches a maximum when myosin-binding sites on actin saturate. J. Biol. Chem. 297:101178, 2021. https://doi.org/10.1016/j.jbc.2021.101178.

    Article  Google Scholar 

  60. Sung, J., et al. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules. Nat. Commun. 6:1–9, 2015.

    Article  Google Scholar 

  61. Svoboda, K., and S. M. Block. Force and velocity measured for single kinesin molecules. Cell. 77:773–784, 1994.

    Article  Google Scholar 

  62. Uyeda, T. Q. P., Y. Iwadate, N. Umeki, A. Nagasaki, and S. Yumura. Stretching actin filaments within cells enhances their affinity for the myosin ii motor domain. PLoS ONE. 6:e26200, 2011.

    Article  Google Scholar 

  63. Wagoner, J. A., and K. A. Dill. Evolution of mechanical cooperativity among myosin II motors. Proc. Natl. Acad. Sci. U.S.A. 118:20, 2021.

    Article  Google Scholar 

  64. Walcott, S., D. M. Warshaw, and E. P. Debold. Mechanical coupling between myosin molecules causes differences between ensemble and single-molecule measurements. Biophys. J. 103:501–510, 2012. https://doi.org/10.1016/j.bpj.2012.06.031.

    Article  Google Scholar 

  65. Weirich, K. L., S. Stam, E. Munro, and M. L. Gardel. Actin bundle architecture and mechanics regulate myosin II force generation. Biophys. J. 120:1957–1970, 2021. https://doi.org/10.1016/j.bpj.2021.03.026.

    Article  Google Scholar 

  66. Yanagida, T., et al. Single-motor mechanics and models of the myosin motor. Philos. Trans. R. Soc. B. 355:441–447, 2000.

    Article  Google Scholar 

  67. Yasuda, K., Y. Shindo, and S. Ishiwata. Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions. Biophys. J. 70:1823–1829, 1996.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the University of Mississippi Graduate Student Council Research Fellowship (OA), University of Mississippi Sally McDonnell-Barksdale Honors College (JCW, JER), the Mississippi Space Grant Consortium under Grant Number NNX15AH78H (JCW, DNR), and the American Heart Association under Grant Number 848586 (DNR).

Author Contributions

OA was involved in all aspects of the work, including assay development, performing experiments, data analysis, and manuscript preparation. OA, JCW, JED, JER, and DNR aided in assay development, data acquisition, and analysis. OA and DNR designed the experiments, analyzed data, and prepared the manuscript.

Conflict of interest

Omayma M. Al Azzam, Janie C. Watts, Justin E. Reynolds, Juliana E. Davis, and Dana N. Reinemann declare that they have no conflict of interest.

Research Involving Human Rights

No human studies were carried out by the authors for this article.

Research Involving Animal Rights

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana N. Reinemann.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 843 kb).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Azzam, O.Y., Watts, J.C., Reynolds, J.E. et al. Myosin II Adjusts Motility Properties and Regulates Force Production Based on Motor Environment. Cel. Mol. Bioeng. 15, 451–465 (2022). https://doi.org/10.1007/s12195-022-00731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-022-00731-1

Keywords

Navigation