Skip to main content

Advertisement

Log in

Fabrication of Decellularized Amnion and Chorion Scaffolds to Develop Bioengineered Cell-Laden Constructs

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Human mesenchymal stem cells (hMSCs) holds great promise for managing several clinical conditions. However, the low engraftment efficiency and obscurity to harvest these cells without compromising the cellular viability, structural and functional properties from the culture niche still remain major obstacles for preparing intact regenerative constructs. Although few studies have demonstrate different methods for generating cell-liberated amniotic scaffolds, a common method for producing completely cell-liberated amnion (D-HAM) and chorion (D-HCM) scaffolds and their cytocompatibility with hMSCs yet to be demonstrated.

Methods

A common process was developed for preparing D-HAM and D-HCM scaffolds for assessing hMSCs engraftment efficiency, proliferation and molecular shifts to generate cell-laden biological discs. The structural and functional integrity of D-HAM and D-HCM was evaluated using different parameters. The compatibility and proliferation efficiency of hMSCs with D-HAM and D-HCM was evaluated.

Results

Histological analysis revealed completely nucleic acid-free D-HAM and D-HCM scaffolds with intact extracellular matrix, mechanical and biological properties almost similar to the native membranes. Human MSCs were able to adhere and engraft on D-HCM better than D-HAM and expanded faster. Ultrastructural observations, crystal violet staining and expression studies showed better structural and functional integrity of hMSCs on D-HCM than D-HAM and control conditions.

Conclusion

A common, simple and reliable process of decellularization can generate large number of cell-liberated amniotic scaffolds in lesser time. D-HCM has better efficiency for hMSCs engraftment and proliferation and can be utilized for preparing suitable cell-laden constructs for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Barton, K., D. L. Budenz, P. T. Khaw, and S. C. G. Tseng. Glaucoma filtration surgery using amniotic membrane transplantation. Investig. Ophthalmol. Vis. Sci. 42(8):1762–1768, 2001.

    Google Scholar 

  2. Bozzola, J. J., and L. D. Russell. Electron Microscopy Principles and Techniques for Biologists, 2nd ed. Sudbury, MA: Jones and Bartlett Publishers, 1998.

    Google Scholar 

  3. Bryksin, A. V., A. C. Brown, M. M. Baksh, M. G. Finn, and T. H. Barker. Learning from nature—novel synthetic biology approaches for biomaterial design. Acta Biomater. 10(4):1761–1769, 2014. https://doi.org/10.1016/j.actbio.2014.01.019.

    Article  Google Scholar 

  4. Chomczynski, P., and N. Sacchi. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159, 1987. https://doi.org/10.1006/abio.1987.9999.

    Article  Google Scholar 

  5. Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials. 32(12):3233–3243, 2011. https://doi.org/10.1016/j.biomaterials.2011.01.057.

    Article  Google Scholar 

  6. Dan, P., É. Velot, G. Francius, P. Menu, and V. Decot. Human-derived extracellular matrix from Wharton’s jelly: an untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Acta Biomater. 48:227–237, 2017. https://doi.org/10.1016/j.actbio.2016.10.018.

    Article  Google Scholar 

  7. Dehghani, S., M. Rasoulianboroujeni, H. Ghasemi, S. H. Keshel, Z. Nozarian, M. N. Hashemian, M. Zarei-Ghanavati, G. Latifi, R. Ghaffari, Z. Cui, H. Ye, and L. Tayebi. 3D-Printed membrane as an alternative to amniotic membrane for ocular surface/conjunctival defect reconstruction: an in vitro & in vivo study. Biomaterials. 174:95–112, 2018. https://doi.org/10.1016/j.biomaterials.

    Article  Google Scholar 

  8. Figueiredo, G. S., S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako. Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells. Acta Biomater. 61:124–133, 2017. https://doi.org/10.1016/j.actbio.2017.07.041.

    Article  Google Scholar 

  9. Francisco, J., C. Ricardo, A. C. Marco, R. B. Simeoni, B. F. Mogharbel, L. P. Gledson, S. M. D. Dilcele, C.G.-S. Luiz, and C. Katherine. Decellularized amniotic membrane scaffold as a pericardial substitute: an in vivo study. Transplant Proc. 48(8):2845–2849, 2016. https://doi.org/10.1016/j.transproceed.2016.07.026.

    Article  Google Scholar 

  10. Frazão, L. P., J. Vieira de Castro, C. Nogueira-Silva, and N. M. Neves. Decellularized human chorion membrane as a novel biomaterial for tissue regeneration. Biomolecules. 10(9):1208, 2020. https://doi.org/10.3390/biom10091208.

    Article  Google Scholar 

  11. Gholipourmalekabadi, M., M. Sameni, D. Radenkovic, M. Mozafari, M. Mossahebi-Mohammadi, and A. Seifalian. Decellularized human amniotic membrane: how viable is it as a delivery system for human adipose tissue-derived stromal cells? Cell Prolif. 49(1):115–121, 2016. https://doi.org/10.1111/cpr.12240.

    Article  Google Scholar 

  12. Gilbert, T. W., T. L. Sellaro, and S. F. Badylak. Decellularization of tissues and organs. Biomaterials. 27(19):3675–3683, 2006. https://doi.org/10.1016/j.biomaterials.2006.02.014.

    Article  Google Scholar 

  13. Go, Y. Y., S. E. Kim, G. J. Cho, S.-W. Chae, and J.-J. Song. Differential effects of amnion and chorion membrane extracts on osteoblast-like cells due to the different growth factor composition of the extracts. PLoS ONE.12:e0182716, 2017. https://doi.org/10.1371/journal.pone.0182716.

    Article  Google Scholar 

  14. Grey, C., Tissue engineering scaffold fabrication and processing techniques to improve cellular infiltration. Dissertation, Virginia Commonwealth University, Richmond, 2014.

  15. Gupta, A., S. D. Kedige, and K. Jain. Amnion and chorion membranes: potential stem cell reservoir with wide applications in periodontics. Int. J. Biomater. 2015:1–9, 2015. https://doi.org/10.1155/2015/274082.

    Article  Google Scholar 

  16. Hamid, S., A. Muhammad, S. Zikria, I. Mehwish, I. Muhammad, D. Zeeshan, and K. Asif Manzoor. Mesenchymal stem cells (MSCs) as skeletal therapeutics—an update. J. Biomed. Sci. 23(41):1–15, 2016. https://doi.org/10.1186/s12929-016-0254-3.

    Article  Google Scholar 

  17. Jie, J., J. Yang, H. He, L. Zhang, Z. Li, J. Chen, M. Vimalin Jeyalatha, Z. Liu, and W. Li. Tissue remodeling after ocular surface reconstruction with denuded amniotic membrane. Sci. Rep. 8(1):6400, 2018. https://doi.org/10.1038/s41598-018-24694-4.

    Article  Google Scholar 

  18. Kakabadze, Z., K. Mardaleishvili, G. Loladze, I. Javakhishvili, K. Chakhunasvili, L. Karalashvili, N. Sukhitashvili, G. Chutkerashvili, A. Kakabadze, and D. Chakhunasvili. Clinical application of decellularized and lyophilized human amnion/chorion membrane grafts for closing post-laryngectomy pharyngocutaneous fistulas. J. Surg. Oncol. 113(5):538–543, 2016. https://doi.org/10.1002/jso.24163.

    Article  Google Scholar 

  19. Kannaiyan, J., S. Suriya-Narayanan, M. Palaniyandi, B. Rajangam, C. Hemlata, and P. Anubhav. Amniotic membrane as a scaffold in wound healing and diabetic foot ulcer: an experimental technique and recommendations. IJRMS. 2016. https://doi.org/10.18203/2320-6012.ijrms20162206.

    Article  Google Scholar 

  20. Khalil, S., N. El-Badri, M. El-Mokhtaar, S. Al-Mofty, M. Farghaly, R. Ayman, H. Dina, and M. Noha. A cost-effective method to assemble biomimetic 3D cell culture platforms. PLoS ONE.11(12):e0167116, 2016. https://doi.org/10.1371/journal.pone.0167116.

    Article  Google Scholar 

  21. Koob, T. J., J. J. Lim, M. Massee, N. Zabek, R. Rennert, G. Gurtner, and W. W. Li. Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration. Vasc Cell. 1(6):10, 2014. https://doi.org/10.1186/2045-824X-6-10.

    Article  Google Scholar 

  22. Kshersagar, J., R. Kshirsagar, S. Desai, R. Bohara, and M. Joshi. Decellularized amnion scaffold with activated PRP: a new paradigm dressing material for burn wound healing. Cell Tissue Bank. 19(3):423–436, 2018. https://doi.org/10.1007/s10561-018-9688-z.

    Article  Google Scholar 

  23. Lee, J. W., W. Y. Park, E. A. Kim, and I. H. Yun. Tissue response to implanted Ahmed glaucoma valve with adjunctive amniotic membrane in rabbit eyes. Ophthalmic Res. 51(3):129–139, 2014. https://doi.org/10.1159/000357097.

    Article  Google Scholar 

  24. Li, X., L. Duan, Y. Liang, W. Zhu, J. Xiong, and D. Wang. Human umbilical cord blood-derived mesenchymal stem cells contribute to chondrogenesis in coculture with chondrocytes. Biomed. Res. Int. 2016:3827057, 2016. https://doi.org/10.1155/2016/3827057.

    Article  Google Scholar 

  25. Lim, R. Concise review: fetal membranes in regenerative medicine: new tricks from an old dog? Stem Cells Transl. Med. 6(9):1767–1776, 2017. https://doi.org/10.1002/sctm.16-0447.

    Article  Google Scholar 

  26. Litwiniuk, M., M. Radowicka, A. Krejner, A. Śladowska, and T. Grzela. Amount and distribution of selected biologically active factors in amniotic membrane depends on the part of amnion and mode of childbirth. Can we predict properties of amnion dressing? A proof-of-concept study. Cent. Eur. J. Immunol. 43(1):97–102, 2018. https://doi.org/10.5114/ceji.2017.69632.

    Article  Google Scholar 

  27. Maiti, S. K., M. U. Shiva Kumar, L. Srivastava, A. R. Ninu, and K. Naveen. Isolation, proliferation and morphological characteristics of bone-marrow derived mesenchymal stem cells (BM-MSC) from different animal species. Trends Biomater. Artif. Organs. 27(1):29–35, 2013.

    Google Scholar 

  28. Massee, M., K. Chinn, J. Lei, J. J. Lim, C. S. Young, and T. J. Koob. Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro. J. Biomed. Mater. Res. B Appl. Biomater. 104(7):1495–1503, 2016. https://doi.org/10.1002/jbm.b.33478.

    Article  Google Scholar 

  29. Massee, M., K. Chinn, J. J. Lim, L. Godwin, C. S. Young, and T. J. Koob. Type I and II diabetic adipose-derived stem cells respond in vitro to dehydrated human amnion/chorion membrane allograft treatment by increasing proliferation, migration, and altering cytokine secretion. Adv. Wound Care (New Rochelle). 5(2):43–54, 2016. https://doi.org/10.1089/wound.2015.0661.

    Article  Google Scholar 

  30. McQuilling, J. P., J. B. Vines, K. A. Kimmerling, and K. C. Mowry. Proteomic comparison of amnion and chorion and evaluation of the effects of processing on placental membranes. Wounds. 29(6):E36–E40, 2017.

    Google Scholar 

  31. Meller, D., V. Dabul, and S. C. Tseng. Expansion of conjunctivital epithelium cells on amniotic membrane. Exp. Eye Res. 74:537–545, 2002. https://doi.org/10.1006/exer.2001.1163.

    Article  Google Scholar 

  32. Mohammadi, A. A., S. M. Seyed Jafari, M. Kiasat, A. R. Tavakkolian, M. T. Imani, M. Ayaz, and H. R. Tolide-ie. Effect of fresh human amniotic membrane dressing on graft take in patients with chronic burn wounds compared with conventional methods. Burns. 39(2):349–353, 2013. https://doi.org/10.1016/j.burns.2012.07.010.

    Article  Google Scholar 

  33. Monteiro, B. G., R. R. Loureiro, P. C. Cristovam, J. L. Covre, J. Á. P. Gomes, and I. Kerkis. Amniotic membrane as a biological scaffold for dental pulp stem cell transplantation in ocular surface reconstruction. Arq. Bras. Oftalmol. 82(1):32–37, 2019. https://doi.org/10.5935/0004-2749.20190009.

    Article  Google Scholar 

  34. Naasani, L. S., A. F. Damo Souza, C. Rodrigues, S. Vedovatto, J. G. Azevedo, A. P. S. Bertoni, M. Da Cruz Fernandes, S. Buchner, and M. R. Wink. Decellularized human amniotic membrane associated with adipose derived mesenchymal stromal cells as a bioscaffold: physical, histological and molecular analysis. Biochem. Eng. 152:107366, 2019. https://doi.org/10.1016/j.bej.2019.107366

    Article  Google Scholar 

  35. Ngadiman, N. H. A., M. Y. Noordin, A. Idris, and D. Kurniawan. A review of evolution of electrospun tissue engineering scaffold: from two dimensions to three dimensions. Proc. Inst. Mech. Eng. Part H J Eng. Med. 231(7):597–616, 2017. https://doi.org/10.1177/0954411917699021.

    Article  Google Scholar 

  36. Paolin, A., E. Cogliati, D. Trojan, C. Griffoni, A. Grassetto, H. M. Elbadawy, and D. Ponzin. Amniotic membranes in ophthalmology: long term data on transplantation outcomes. Cell Tissue Bank. 17(1):51–58, 2016. https://doi.org/10.1007/s10561-015-9520-y.

    Article  Google Scholar 

  37. Parry, S., and J. F. Strauss III. Premature rupture of the fetal membranes. N. Engl. J. Med. 338(10):663–670, 1998. https://doi.org/10.1056/NEJM199803053381006.

    Article  Google Scholar 

  38. Porzionato, A., E. Stocco, S. Barbon, F. Grandi, V. Macchi, and R. De Caro. Molecular sciences tissue-engineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives. IJMS. 19(12):4117, 2018. https://doi.org/10.3390/ijms19124117.

    Article  Google Scholar 

  39. Rana, D., S. Arulkumar, A. Vishwakarma, and M. Ramalingam. Considerations on Designing Scaffold for Tissue Engineering. Stem Cell Biology and Tissue Engineering in Dental Sciences. New York: Academic Press, pp. 133–148, 2015.

    Book  Google Scholar 

  40. Rao Pattabhi, S., J. S. Martinez, and T. C. Keller 3rd. Decellularized ECM effects on human mesenchymal stem cell stemness and differentiation. Differentiation. 88(4–5):131–143, 2014. https://doi.org/10.1016/j.diff.2014.12.005.

    Article  Google Scholar 

  41. Rieder, E., M.-T. Kasimir, G. Silberhumer, G. Seebacher, E. Wolner, P. Simon, and G. Weigel. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiov. Surg. 127(2):399–405, 2004. https://doi.org/10.1016/j.jtcvs.2003.06.017.

    Article  Google Scholar 

  42. Saghizadeh, M., M. A. Winkler, A. A. Kramerov, D. M. Hemmati, C. A. Ghiam, S. D. Dimitrijevich, D. Sareen, L. Ornelas, H. Ghiasi, W. J. Brunken, E. Maguen, Y. S. Rabinowitz, C. N. Svendsen, K. Jirsova, and A. V. Ljubimov. A simple alkaline method for decellularizing human amniotic membrane for cell culture. PLoS ONE.8(11):e79632, 2013. https://doi.org/10.1371/journal.pone.0079632.

    Article  Google Scholar 

  43. Salah, R. A., I. K. Mohamed, and N. El-Badri. Development of decellularized amniotic membrane as a bioscaffold for bone marrow-derived mesenchymal stem cells: ultrastructural study. J. Mol. Histol. 49(3):289–301, 2018. https://doi.org/10.1007/s10735-018-9768-1.

    Article  Google Scholar 

  44. Sara, L. M., K. Thomas, H. Nicola, P. Olena, F. Carsten, B. Martin, F. Constanca, G. Birgit, and G. Oleksandr. Human amniotic membrane: a review on tissue engineering, application, and storage. J. Biomed. Mater. Res. B Appl. Biomater. 2021:1–18, 2020. https://doi.org/10.1002/jbm.b.34782.

    Article  Google Scholar 

  45. Schenke-Layland, K. From tissue engineering to regenerative medicine—the potential and the pitfalls. Adv. Drug Deliv. Rev. 63(4–5):193–194, 2011. https://doi.org/10.1016/j.addr.2011.04.003.

    Article  Google Scholar 

  46. Strauss, J. F., 3rd. Extracellular matrix dynamics and fetal membrane rupture. Reprod. Sci. 20(2):140–153, 2013. https://doi.org/10.1177/1933719111424454.

    Article  Google Scholar 

  47. Taghiabadi, E., S. Nasri, S. Shafieyan, S. J. Firoozinezhad, and N. Aghdami. Fabrication and characterization of spongy denuded amniotic membrane based scaffold for tissue engineering. Cell J. 16(4):476–487, 2015. https://doi.org/10.22074/cellj.2015.493.

    Article  Google Scholar 

  48. Tiziana, S., P. Gianfranco, and G. Umberto. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 25(5):829–848, 2016. https://doi.org/10.3727/096368915x689622.

    Article  Google Scholar 

  49. Wang, M., Y. Yang, D. Yang, F. Luo, W. Liang, S. Guo, and J. Xu. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology. 126(2):220–232, 2009. https://doi.org/10.1111/j.1365-2567.2008.02891.x.

    Article  Google Scholar 

  50. Wilshaw, S. P., J. N. Kearney, J. Fisher, and E. Ingham. Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng. 12:2117–2129, 2006. https://doi.org/10.1089/ten.2006.12.2117.

    Article  Google Scholar 

  51. Wilshaw, S. P., J. Kearney, J. Fisher, and E. Ingham. Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogeneic cells. Tissue Eng. Part A. 14:463–472, 2008. https://doi.org/10.1089/tea.2007.0145.

    Article  Google Scholar 

  52. Yang, S., K.-F. Leong, Z. Du, and C.-K. Chua. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. . Tissue Eng. 7(6):679–689, 2001. https://doi.org/10.1089/107632701753337645.

    Article  Google Scholar 

  53. Zare-Bidaki, M., S. Sadrinia, S. Erfani, E. Afkar, and N. Ghanbarzade. Antimicrobial properties of amniotic and chorionic membranes: a comparative study of two human fetal sacs. J. Reprod. Infertil. 18(2):218–224, 2017.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the grant received from Indian Council of Medical Research (ICMR) in form of Research Associate Fellowship (RA, No. 5/3/8/3/ITR-F/2019-ITR) to Sandeep Kumar Vishwakarma. All authors thank to Owaisi Hospital and Research Centre for material supply.

Conflict of interest

Chandrakala Lakkireddy, Nagarapu Raju, Shaik Iqbal Ahmed, Avinash Bardia, Mazharuddin Ali Khan, Sandhya Annamaneni, and Aleem Ahmed Khan declare that they have no conflict of interest.

Consent to Participate

All the participants in the study provided signed inform consent forms prior to the sample collection

Consent to Publish

All the participants in the study agreed for publishing this study

Ethical Approval

Institutional Review Board has approved present study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleem Ahmed Khan.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakkireddy, C., Vishwakarma, S.K., Raju, N. et al. Fabrication of Decellularized Amnion and Chorion Scaffolds to Develop Bioengineered Cell-Laden Constructs. Cel. Mol. Bioeng. 15, 137–150 (2022). https://doi.org/10.1007/s12195-021-00707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00707-7

Keywords

Navigation