Skip to main content

Advertisement

Log in

Carrier-Free CXCR4-Targeted Nanoplexes Designed for Polarizing Macrophages to Suppress Tumor Growth

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Treatment options for cancer metastases, the primary cause of cancer mortality, are limited. The chemokine receptor CXCR4 is an attractive therapeutic target in cancer because it mediates metastasis by inducing cancer cell and macrophage migration. Here we engineered carrier-free CXCR4-targeting RNA-protein nanoplexes that not only inhibited cellular migration but also polarized macrophages to the M1 phenotype.

Materials and Methods

A CXCR4-targeting single-chain variable fragment (scFv) antibody was fused to a 3030 Da RNA-binding protamine peptide (RSQSRSRYYRQRQRSRRRRRRS). Self-assembling nanoplexes were formed by mixing the CXCR4-scFv-protamine fusion protein (CXCR4-scFv-RBM) with miR-127-5p, a miRNA shown to mediate M1 macrophage polarization. RNA-protein nanoplexes were characterized with regard to their physicochemical properties and therapeutic efficacy.

Results

CXCR4-targeting RNA-protein nanoplexes simultaneously acted as a targeting ligand, a macrophage polarizing drug, and a miRNA delivery vehicle. Our carrier-free, RNA-protein nanoplexes specifically bound to CXCR4-positive macrophages and breast cancer cells, showed high drug loading (~ 90% w/w), and are non-toxic. Further, these RNA-protein nanoplexes significantly inhibited cancer and immune cell migration (75 to 99%), robustly polarized macrophages to the tumor-suppressive M1 phenotype, and inhibited tumor growth in a mouse model of triple-negative breast cancer

Conclusions

We engineered a novel class of non-toxic RNA-protein nanoplexes that modulate the tumor stroma. These nanoplexes are promising candidates for add-ons to clinically approved chemotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

scFv:

Single-chain variable fragment

RBM:

RNA-binding motif

References

  1. Aras, S., and M. R. Zaidi. TAMeless traitors: macrophages in cancer progression and metastasis. Br. J. Cancer 117:1583–1591, 2017.

    Article  Google Scholar 

  2. Brown, J. M., L. Recht, and S. Strober. The promise of targeting macrophages in cancer therapy. Clin. Cancer Res. 23:3241–3250, 2017.

    Article  Google Scholar 

  3. Burger, J. A., and T. J. Kipps. CXCR18: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767, 2006.

    Article  Google Scholar 

  4. Chatterjee, S., B. Behnam Azad, and S. Nimmagadda. The intricate role of CXCR1 in cancer. Adv. Cancer Res. 124:31–82, 2014.

    Article  Google Scholar 

  5. Chen, Y., S. Zhang, Q. Wang, and X. Zhang. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J. Hematol. Oncol. 10:36, 2017.

    Article  Google Scholar 

  6. Cheok, C. F. Protecting normal cells from the cytotoxicity of chemotherapy. Cell Cycle 11:2227–2228, 2012.

    Article  Google Scholar 

  7. Chu, K. S., A. N. Schorzman, M. C. Finniss, C. J. Bowerman, L. Peng, J. C. Luft, A. J. Madden, A. Z. Wang, W. C. Zamboni, and J. M. DeSimone. Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials 34:8424–8429, 2013.

    Article  Google Scholar 

  8. Darash-Yahana, M., E. Pikarsky, R. Abramovitch, E. Zeira, B. Pal, R. Karplus, K. Beider, S. Avniel, S. Kasem, E. Galun, and A. Peled. Role of high expression levels of CXCR26 in tumor growth, vascularization, and metastasis. FASEB J. 18:1240–1242, 2004.

    Article  Google Scholar 

  9. Deci, M. B., S. W. Ferguson, M. Liu, D. C. Peterson, S. P. Koduvayur, and J. Nguyen. Utilizing clathrin triskelions as carriers for spatially controlled multi-protein display. Biomaterials 108:120–128, 2016.

    Article  Google Scholar 

  10. Deci, M. B., S. W. Ferguson, S. L. Scatigno, and J. Nguyen. Modulating macrophage polarization through CCR7 inhibition and multivalent engagement. Mol. Pharm. 15:2721–2731, 2018.

    Article  Google Scholar 

  11. Deci, M. B., M. Liu, Q. T. Dinh, and J. Nguyen. Precision engineering of targeted nanocarriers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10:e1511, 2018.

    Article  Google Scholar 

  12. Dong, X., C. A. Mattingly, M. T. Tseng, M. J. Cho, Y. Liu, V. R. Adams, and R. J. Mumper. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res. 69:3918–3926, 2009.

    Article  Google Scholar 

  13. Ferguson, S., S. Kim, C. Lee, M. Deci, and J. Nguyen. The phenotypic effects of exosomes secreted from distinct cellular sources: a comparative study based on miRNA composition. AAPS J. 20:67, 2018.

    Article  Google Scholar 

  14. Furusato, B., A. Mohamed, M. Uhlen, and J. S. Rhim. CXCR3 and cancer. Pathol. Int. 60:497–505, 2010.

    Article  Google Scholar 

  15. Ganapathy, V., P. V. Moghe, and C. M. Roth. Targeting tumor metastases: drug delivery mechanisms and technologies. J. Control. Release 219:215–223, 2015.

    Article  Google Scholar 

  16. Haidaris, C. G., J. Malone, L. A. Sherrill, J. M. Bliss, A. A. Gaspari, R. A. Insel, and M. A. Sullivan. Recombinant human antibody single chain variable fragments reactive with Candida albicans surface antigens. J. Immunol. Methods 257:185–202, 2001.

    Article  Google Scholar 

  17. Hu, H., J.-J. Hang, T. Han, M. Zhuo, F. Jiao, and L.-W. Wang. The M2 phenotype of tumor-associated macrophages in the stroma confers a poor prognosis in pancreatic cancer. Tumor Biol. 37:8657–8664, 2016.

    Article  Google Scholar 

  18. Huang, R., K. T. Gorman, C. R. Vinci, E. Dobrovetsky, S. Graslund, and B. K. Kay. Streamlining the pipeline for generation of recombinant affinity reagents by integrating the affinity maturation step. Int. J. Mol. Sci. 16:23587–23603, 2015.

    Article  Google Scholar 

  19. Hughes, R., B. Z. Qian, C. Rowan, M. Muthana, I. Keklikoglou, O. C. Olson, S. Tazzyman, S. Danson, C. Addison, M. Clemons, A. M. Gonzalez-Angulo, J. A. Joyce, M. De Palma, J. W. Pollard, and C. E. Lewis. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75:3479–3491, 2015.

    Article  Google Scholar 

  20. Italiani, P., and D. Boraschi. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front. Immunol. 5:514, 2014.

    Article  Google Scholar 

  21. Jensen, J. L., A. Rakhmilevich, E. Heninger, A. T. Broman, C. Hope, F. Phan, S. Miyamoto, I. Maroulakou, N. Callander, P. Hematti, M. Chesi, P. L. Bergsagel, P. Sondel, and F. Asimakopoulos. Tumoricidal effects of macrophage-activating immunotherapy in a murine model of relapsed/refractory multiple myeloma. Cancer Immunol. Res. 3:881–890, 2015.

    Article  Google Scholar 

  22. Li, H., X. Fan, and J. Houghton. Tumor microenvironment: the role of the tumor stroma in cancer. J. Cell. Biochem. 101:805–815, 2007.

    Article  Google Scholar 

  23. Nguyen, J., R. Reul, S. Roesler, E. Dayyoub, T. Schmehl, T. Gessler, W. Seeger, and T. H. Kissel. Amine-modified poly(vinyl alcohol)s as non-viral vectors for siRNA delivery: effects of the degree of amine substitution on physicochemical properties and knockdown efficiency. Pharm. Res. 27:2670–2682, 2010.

    Article  Google Scholar 

  24. Nguyen, J., T. W. Steele, O. Merkel, R. Reul, and T. Kissel. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J. Control. Release 132:243–251, 2008.

    Article  Google Scholar 

  25. Nguyen, J., C. L. Walsh, J. P. Motion, E. K. Perttu, and F. Szoka. Controlled nucleation of lipid nanoparticles. Pharm. Res. 29:2236–2248, 2012.

    Article  Google Scholar 

  26. Rana, K., J. L. Liesveld, and M. R. King. Delivery of apoptotic signal to rolling cancer cells: A novel biomimetic technique using immobilized TRAIL and E-selectin. Biotechnol. Bioeng. 102:1692–1702, 2009.

    Article  Google Scholar 

  27. Reul, R., J. Nguyen, A. Biela, E. Marxer, U. Bakowsky, G. Klebe, and T. Kissel. Biophysical and biological investigation of DNA nano-complexes with a non-toxic, biodegradable amine-modified hyperbranched polyester. Int. J. Pharm. 436:97–105, 2012.

    Article  Google Scholar 

  28. Sanchez-Martin, L., A. Estecha, R. Samaniego, S. Sanchez-Ramon, M. A. Vega, and P. Sanchez-Mateos. The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood 117:88–97, 2011.

    Article  Google Scholar 

  29. Seyfried, T. N., and L. C. Huysentruyt. On the origin of cancer metastasis. Crit. Rev. Oncog. 18:43–73, 2013.

    Article  Google Scholar 

  30. Tardi, P. G., R. C. Gallagher, S. Johnstone, N. Harasym, M. Webb, M. B. Bally, and L. D. Mayer. Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochim. Biophys. Acta (BBA): Biomembranes 1768:678–687, 2007.

    Article  Google Scholar 

  31. Wynn, T. A., and K. M. Vannella. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–462, 2016.

    Article  Google Scholar 

  32. Yao, Y. D., T. M. Sun, S. Y. Huang, S. Dou, L. Lin, J. N. Chen, J. B. Ruan, C. Q. Mao, F. Y. Yu, M. S. Zeng, J. Y. Zang, Q. Liu, F. X. Su, P. Zhang, J. Lieberman, J. Wang, and E. Song. Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. Sci. Transl. Med. 4:130ra48, 2012.

    Article  Google Scholar 

  33. Ying, H., Y. Kang, H. Zhang, D. Zhao, J. Xia, Z. Lu, H. Wang, F. Xu, and L. Shi. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J. Immunol. 194:1239–1251, 2015.

    Article  Google Scholar 

  34. Zhang, X., R. Goncalves, and D. M. Mosser. The isolation and characterization of murine macrophages, Chapter 14:Unit 14 1. Curr. Protoc. Immunol. 2008. https://doi.org/10.1002/0471142735.im1401s83.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the NIH through Awards EB023262 and EB021454. We thank Dr. Mark Sullivan for providing us with the phage display library. We thank Dr. Brian Kay and Dr. Renhua Huang for training in techniques related to phage display and screening. We thank Dr. Gauri Rao for helpful discussions.

Conflict of interest

All authors, including M.B. Deci, M. Liu, J. Gonya, C.J. Lee, Tingyi Li, S.W. Ferguson, E.E. Bonacquisti, J. Wang, and J. Nguyen, declare that they have no conflicts of interest.

Ethical Approval

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees. No human studies were carried out by the authors for this article

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane Nguyen.

Additional information

Associate Editor Michael King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Juliane Nguyen is an Associate Professor in the Division of Pharmacoengineering and Molecular Therapeutics at the University of North Carolina at Chapel Hill. She received her PharmD and PhD in Pharmaceutical Sciences from the Philipps-University of Marburg (2009), where she trained with Professor Thomas Kissel. From 2009 to 2013, she was a Deutsche Forschungsgemeinschaft postdoctoral fellow in Professor Francis Szoka’s laboratory at the University of California, San Francisco. Dr. Nguyen started her laboratory at the University at Buffalo in July 2013 and was promoted to Associate Professor in January 2019. Her laboratory develops novel protein-, RNA-, and lipid-based biochemical and delivery platforms for treating myocardial infarction and cancer. Dr. Nguyen is the recipient of numerous awards, including the Biomedical Breakthrough Award (2011), the University at Buffalo Exceptional Scholar Young Investigator Award (2017), the Pioneering Pharmaceutical Sciences by Emerging Investigator Award (2018), the NSF CAREER Award (2018), and the NYSTAR faculty award (2019).

This article is part of the CMBE 2019 Young Innovators special issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deci, M.B., Liu, M., Gonya, J. et al. Carrier-Free CXCR4-Targeted Nanoplexes Designed for Polarizing Macrophages to Suppress Tumor Growth. Cel. Mol. Bioeng. 12, 375–388 (2019). https://doi.org/10.1007/s12195-019-00589-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-019-00589-w

Keywords

Navigation