Skip to main content
Log in

Proteolytic Activity Attenuates the Response of Endothelial Cells to Fluid Shear Stress

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Recent evidence indicates that several experimental pathophysiological conditions are associated with elevated protease activity in plasma, which impacts endothelial function. We hypothesize that extracellular structures bound to the endothelial cell (EC) membrane may be degraded by proteolytic activity reducing the cell’s response to physiological shear stress and glucose metabolism efficiency. To test this hypothesis, cultured bovine aortic endothelial cells (BAECs) were exposed to low serine protease activity. Extracellular mechanosensor densities of the glycocalyx and vascular endothelial growth factor receptor 2 (VEGFR-2) were determined. Metabolic dysfunction was tested by examining insulin receptor and glucose uptake levels. Protease treatment impaired the cells’ ability to align in the direction of fluid flow after 12 h of shear stress (12 dyn/cm2); however, cells realigned after an additional 12 h of shear stress with protease inhibition. Proteases caused reduction in the densities of glycocalyx, VEGFR-2, and insulin receptor in static and shear conditions, except for static VEGFR-2 cells. Under static conditions, protease-treated ECs had reduced glucose uptake compared to untreated controls. Under shear, glucose uptake for protease treated BAECs was greater than untreated controls. In conclusion, protease activity in plasma alters the exofacial membrane components of ECs and may interfere with mechanotransduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Arisaka, T., M. Mitsumata, M. Kawasumi, T. Tohjima, S. Hirose, and Y. Yoshida. Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Ann. N. Y. Acad. Sci. 748:543–554, 1995.

    Article  Google Scholar 

  2. Blanquart, C., J. Achi, and T. Issad. Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Biochem. Pharmacol. 76(7):873–883, 2008.

    Article  Google Scholar 

  3. Chen, A. Y., F. A. DeLano, S. R. Valdez, J. N. Ha, H. Y. Shin, and G. W. Schmid-Schönbein. Receptor cleavage reduces the fluid shear response in neutrophils of the spontaneously hypertensive rat. Am. J. Physiol. Cell Physiol. 299(6):C1441–C1449, 2010.

    Article  Google Scholar 

  4. Chen, B. P., Y. S. Li, Y. Zhao, K. D. Chen, S. Li, J. Lao, S. Yuan, J. Y. Shyy, and S. Chien. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol. Genomics 7(1):55–63, 2001.

    Article  Google Scholar 

  5. Cho, C. H., C. S. Lee, M. Chang, I. H. Jang, S. J. Kim, I. Hwang, S. H. Ryu, C. O. Lee, and G. Y. Koh. Localization of VEGFR-2 and PLD2 in endothelial caveolae is involved in VEGF-induced phosphorylation of MEK and ERK. Am. J. Physiol. Heart Circ. Physiol. 286(5):H1881–H1888, 2004.

    Article  Google Scholar 

  6. DeLano, F. A., and G. W. Schmid-Schönbein. Proteinase activity and receptor cleavage: mechanism for insulin resistance in the spontaneously hypertensive rat. Hypertension 52(2):415–423, 2008.

    Article  Google Scholar 

  7. DeLano, F. A., and G. W. Schmid-Schönbein. Proteolytic cleavage of insulin receptor by pancreatic digestive enzymes leads to insulin resistance in hemorrhagic shock. FASEB J. 24:788.7, 2010.

    Google Scholar 

  8. Delano, F. A., H. Zhang, E. E. Tran, C. Zhang, and G. W. Schmid-Schönbein. A new hypothesis for insulin resistance in hypertension due to receptor cleavage. Expert Rev. Endocrinol. Metab. 5(1):149–158, 2010.

    Google Scholar 

  9. Dugani, C. B., V. K. Randhawa, A. W. Cheng, N. Patel, and A. Klip. Selective regulation of the perinuclear distribution of glucose transporter 4 (GLUT4) by insulin signals in muscle cells. Eur. J. Cell Biol. 87(6):337–351, 2008.

    Article  Google Scholar 

  10. Fahy, B. G., A. M. Sheehy, and D. B. Coursin. Glucose control in the intensive care unit. Crit. Care Med. 37(5):1769–1776, 2009.

    Article  Google Scholar 

  11. Gao, L., and H. H. Lipowsky. Measurement of solute transport in the endothelial glycocalyx using indicator dilution techniques. Ann. Biomed. Eng. 37(9):1781–1795, 2009.

    Article  Google Scholar 

  12. Holmes, K., O. L. Roberts, A. M. Thomas, and M. J. Cross. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal. 19(10):2003–2012, 2007.

    Article  Google Scholar 

  13. Hou, X., M. A. Weiler, J. N. Winger, J. R. Morris, and J. L. Borke. Rat model for studying tissue changes induced by the mechanical environment surrounding loaded titanium implants. Int. J. Oral Maxillofac. Implants 24(5):800–807, 2009.

    Google Scholar 

  14. Masini, E., S. Cuzzocrea, E. Mazzon, C. Muia, A. Vannacci, F. Fabrizi, and D. Bani. Protective effects of relaxin in ischemia/reperfusion-induced intestinal injury due to splanchnic artery occlusion. Br. J. Pharmacol. 148(8):1124–1132, 2006.

    Article  Google Scholar 

  15. Matsuda, N., H. Teramae, S. Yamamoto, K. Takano, Y. Takano, and Y. Hattori. Increased death receptor pathway of apoptotic signaling in septic mouse aorta: effect of systemic delivery of FADD siRNA. Am. J. Physiol. Heart Circ. Physiol. 298(1):H92–H101, 2010.

    Article  Google Scholar 

  16. Merks, R. M., E. D. Perryn, A. Shirinifard, and J. A. Glazier. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4(9):e1000163, 2008.

    Article  MathSciNet  Google Scholar 

  17. Olsen, J. V., S. E. Ong, and M. Mann. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics 3(6):608–614, 2004.

    Article  Google Scholar 

  18. Pace, C. N., and A. J. Barrett. Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1. Biochem. J. 219(2):411–417, 1984.

    Google Scholar 

  19. Paczek, L., W. Michalska, and I. Bartlomiejczyk. Proteolytic enzyme activity as a result of aging. Aging Clin. Exp. Res. 21(1):9–13, 2009.

    Google Scholar 

  20. Penn, A. H., T. E. Hugli, and G. W. Schmid-Schönbein. Pancreatic enzymes generate cytotoxic mediators in the intestine. Shock 27(3):296–304, 2007.

    Article  Google Scholar 

  21. Rosario, H. S., S. W. Waldo, S. A. Becker, and G. W. Schmid-Schönbein. Pancreatic trypsin increases matrix metalloproteinase-9 accumulation and activation during acute intestinal ischemia-reperfusion in the rat. Am. J. Pathol. 164(5):1707–1716, 2004.

    Article  Google Scholar 

  22. Schmid-Schönbein, G. W. 2008 Landis award lecture. Inflammation and the autodigestion hypothesis. Microcirculation 16(4):289–306, 2009.

    Article  Google Scholar 

  23. Shay-Salit, A., M. Shushy, E. Wolfovitz, H. Yahav, F. Breviario, E. Dejana, and N. Resnick. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Natl. Acad. Sci. USA 99(14):9462–9467, 2002.

    Article  Google Scholar 

  24. Shibuya, M. Vascular endothelial growth factor receptor family genes: when did the three genes phylogenetically segregate? Biol. Chem. 383(10):1573–1579, 2002.

    Article  Google Scholar 

  25. Somanath, P. R., N. L. Malinin, and T. V. Byzova. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12(2):177–185, 2009.

    Article  Google Scholar 

  26. Squire, J. M., M. Chew, G. Nneji, C. Neal, J. Barry, and C. Michel. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136(3):239–255, 2001.

    Article  Google Scholar 

  27. Stucky, C. L., and G. R. Lewin. Isolectin B(4)-positive and -negative nociceptors are functionally distinct. J. Neurosci. 19(15):6497–6505, 1999.

    Google Scholar 

  28. Suematsu, M., F. A. DeLano, D. Poole, R. L. Engler, M. Miyasaka, B. W. Zweifach, and G. W. Schmid-Schönbein. Spatial and temporal correlation between leukocyte behavior and cell injury in postischemic rat skeletal muscle microcirculation. Lab. Invest. 70(5):684–695, 1994.

    Google Scholar 

  29. Sun, R. J., S. Muller, J. F. Stoltz, and X. Wang. Shear stress induces caveolin-1 translocation in cultured endothelial cells. Eur. Biophys. J. 30(8):605–611, 2002.

    Article  Google Scholar 

  30. Sun, Z., X. Wang, A. Lasson, A. Bojesson, M. Annborn, and R. Andersson. Effects of inhibition of PAF, ICAM-1 and PECAM-1 on gut barrier failure caused by intestinal ischemia and reperfusion. Scand. J. Gastroenterol. 36(1):55–65, 2001.

    Article  Google Scholar 

  31. Tarbell, J. M., and E. E. Ebong. The endothelial glycocalyx: a mechano-sensor and -transducer. Sci. Signal 1(40):pt8, 2008.

    Article  Google Scholar 

  32. Tarbell, J. M., S. Weinbaum, and R. D. Kamm. Cellular fluid mechanics and mechanotransduction. Ann. Biomed. Eng. 33(12):1719–1723, 2005.

    Article  Google Scholar 

  33. Tran, E. D., F. A. Delano, and G. W. Schmid-Schönbein. Enhanced matrix metalloproteinase activity in the spontaneously hypertensive rat: VEGFR-2 cleavage, endothelial apoptosis, and capillary rarefaction. J. Vasc. Res. 47(5):423–431, 2010.

    Article  Google Scholar 

  34. Waldo, S. W., H. S. Rosario, A. H. Penn, and G. W. Schmid-Schönbein. Pancreatic digestive enzymes are potent generators of mediators for leukocyte activation and mortality. Shock 20(2):138–143, 2003.

    Article  Google Scholar 

  35. Wang, H., Z. Liu, G. Li, and E. J. Barrett. The vascular endothelial cell mediates insulin transport into skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 291(2):E323–E332, 2006.

    Article  Google Scholar 

  36. Wang, Z., C. Tiruppathi, R. D. Minshall, and A. B. Malik. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3(12):4110–4116, 2009.

    Article  Google Scholar 

  37. Xu, F., X. Yang, Z. Lu, and F. Kuang. Evaluation of glucose metabolic disorder: insulin resistance and insulin receptors in critically ill children. Chin. Med. J. (Engl.) 109(10):807–809, 1996.

    Google Scholar 

  38. Yamamoto, K., T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am. J. Physiol. Heart Circ. Physiol. 288(4):H1915–H1924, 2005.

    Article  Google Scholar 

  39. Yao, Y., A. Rabodzey, and C. F. Dewey, Jr. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 293(2):H1023–H1030, 2007.

    Article  Google Scholar 

  40. Zhai, L., and J. L. Messina. Age and tissue specific differences in the development of acute insulin resistance following injury. J. Endocrinol. 203(3):365–374, 2009.

    Article  Google Scholar 

  41. Zhuo, L., V. C. Hascall, and K. Kimata. Inter-alpha-trypsin inhibitor, a covalent protein–glycosaminoglycan–protein complex. J. Biol. Chem. 279(37):38079–38082, 2004.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jerry Norwich for assistance with the confocal microscopy. We also would like to thank Dr. Julie Li and Suli Yuan for valuable discussions. This work was supported by grants HL 10881 and GM-85072 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina E. Altshuler.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altshuler, A.E., Morgan, M.J., Chien, S. et al. Proteolytic Activity Attenuates the Response of Endothelial Cells to Fluid Shear Stress. Cel. Mol. Bioeng. 5, 82–91 (2012). https://doi.org/10.1007/s12195-011-0207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0207-6

Keywords

Navigation